期刊文献+
共找到678篇文章
< 1 2 34 >
每页显示 20 50 100
Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate 被引量:8
1
作者 Zhu Zikun Han Yang +2 位作者 Zhang Zhou Zhang Yi Zhou Longzao 《China Welding》 CAS 2021年第3期49-58,共10页
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen... The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used. 展开更多
关键词 numerical simulation multi-layer and multi-pass welding Q690D high strength low alloy steel welding residual stress and deformation
下载PDF
Relief of Residual Stresses in 800 MPa Grade High Strength Steel Weldments by Explosion Treatment and its Effect on Mechanical Properties 被引量:1
2
作者 Changzhong WU Huaining CHEN Jing CHEN Quanhong LIN Jianjun GUAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期387-391,共5页
The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were... The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous. 展开更多
关键词 high strength steel Explosion treatment residual stress Mechanical properties COD test
下载PDF
Measurement of Residual Stress Field of Hardfacing Metal with RE Oxide and Its Numerical Simulation 被引量:1
3
作者 杨庆祥 姚枚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期669-674,共6页
The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respect... The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the experimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic transformation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved. 展开更多
关键词 metal materials residual stress hardfacing metal martensitic transformation medium-high carbon steel numerical simulation rare earth oxide
下载PDF
High-precision simulation and experimental verification of residual stress and surface topography of cylindrical surface shot peening
4
作者 Jiuyue ZHAO Jinyuan TANG +3 位作者 Huaming LIU Huiyun ZHANG Xin LI Han DING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期535-559,共25页
Shot peening is commonly employed for surface deformation strengthening of cylindrical surface part.Therefore,it is critical to understand the effects of shot peening on residual stress and surface topography.Compared... Shot peening is commonly employed for surface deformation strengthening of cylindrical surface part.Therefore,it is critical to understand the effects of shot peening on residual stress and surface topography.Compared to flat surface,cylindrical surface shot peening has two significant features:(i)the curvature of the cylindrical surface and the scattering of the shot stream cause dis-tributed impact velocities;(i)the rotation of the part results in a periodic variation of the impact velocity component.Therefore,it is a challenge to quickly and accurately predict the shot peening residual stress and surface topography of cylindrical surface.This paper developed a high-precision model which considers the more realistic shot peening process.Firstly,a kinematic analysis model was developed to simulate the relative movement of numerous shots and cylindrical surface.Then,the spatial distribution and time-varying impact information was calculated.Subsequently,the impact information was used for finite element modeling to predict residual stress and surface topography.The proposed kinematic analysis method was validated by comparison with the dis-crete element method.Meanwhile,9310 high strength steel rollers shot peening test verified the effectiveness of the model in predicting the residual stress and surface topography.In addition,the effects of air pressure and attack angle on the residual stress and surface topography were investigated.This work could provide a functional package for efficient prediction of the surface integrity and guide industrial application in cylindrical surface shot peening. 展开更多
关键词 Shot peening Cylindrical surface 9310 high strength steel high-precision modeling residual stress Surface topography
原文传递
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
5
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
Threshold Stress Intensity of Hydrogen-Induced Cracking and Stress Corrosion Cracking of High Strength Steel
6
作者 LI Hui-lu GAO Ke-wei +5 位作者 QIAO Li-jie WANG Yan-bing CHU Wu-yang HUI Wei-jun DONG Han WENG Yu-qing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2001年第2期42-46,共5页
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr... The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced. 展开更多
关键词 high strength steel stress corrosion hydrogen-induced cracking
下载PDF
IMPROVEMENT ON SUSCEPTIBILITY OF ULTAR-HIGH STRENGTH STEEL TO STRESS CORROSION CRACKING BY HIGH TEMPERATURE QUENCHING
7
作者 LI Guangfu WU Rengen Harbin Institute of Technology,Harbin,China LI Guangfu Division of Metallography,Harbin Institute of Technology,Harbin 150006,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第3期213-217,共5页
The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the q... The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the quenching temperature raised from 870 to 1200℃ . All of the fractures are intergranular.The analyses of the segregation along prior austenitic grain boundaries,grain size and other microstructural factors reveal that the inerease of K_(ISCC) is mainly due to the coarsening of prior austenitic grains. 展开更多
关键词 ultra-high strength steel stress corrosion cracking grain boundary segregation
下载PDF
The relationship between microstructure and stress-strain behavior in tension in high strength pipeline steel
8
作者 CUI Tiancheng,ZHENG Lei and Li Bing Research Institute of Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期57-,共1页
In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a &... In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures. 展开更多
关键词 high strength pipeline steel tension stress-strain behavior MICROSTRUCTURE
下载PDF
1300 MPa High Strength Steel for Bolt with Superior Delayed Fracture Resistance 被引量:2
9
作者 HUI Wei-jun DONG Han +2 位作者 WENG Yu-qing CHEN Si-lian WANG Mao-qiu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2002年第1期40-45,共6页
By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength stee... By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength steel(ADF1)for bolts.The sustained load bending test,sustained load tensile test and stress corrosion cracking test have been carried out to evaluate the delayed fracture resistance of steel ADFl and commercial steel 42 CrMo.The results showed that steel ADF1 has superior delayed fracture resistance to that of 42 CrMo steel.It's concluded that the superior delayed fracture resistance of ADF1 is mainly due to the increase of tempering temperature,fine homogeneously distributed MC carbide and fine prior austenite grain size. 展开更多
关键词 high strength steel bolt steel delayed fracture hydrogen embrittlement stress corrosion
下载PDF
DUCTILE CRACK INITIATION AND STEADY-STATE PROPAGATION OF HIGH STRENGTH STRUCTURAL STEEL 被引量:2
10
作者 CHEN Huangpu DENG Zengjie Xi’an Jiaotong University,Xi’an,China CHEN Huangpu,Lectuer,Research Institute for Strength of Metals,Xi’an Jiaotong University,Xi’an 710049,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第3期194-198,共5页
The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have... The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have been investigated.The resistance to crack propagation is mainly de- termined by the plastic constrain ahead of the crack tip,the elastic energy and plastic work absorbed in the stress-strain field.These are connected with the state function of triaxial stress.The deformation history and strain characteristic during deformation of material are described by the flow line in which the deformation history and strain characteristic restrain the crack initiation at stage Ⅱ and the crack propagation at stage Ⅲ.The strain hardening rate may sensitively reflect the stress distribution and micro-fracture mechanism in the interi- or of material. 展开更多
关键词 high strength structural steel MICROSTRUCTURE stress state strain characteristic
下载PDF
Dynamic recrystallization behavior and kinetics of high strength steel 被引量:1
11
作者 吴光亮 周超洋 刘新彬 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1007-1014,共8页
The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and... The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and 5 s-1.It is observed that dynamic recrystallization(DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate.The relationship between material constants(Q,n,α and ln A) and strain is identified by the sixth order polynomial fit.The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified.Moreover,the critical characteristics of DRX are extracted from the stress-strain curves under different deformation conditions by linear regression.The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate.The kinetics of DRX increases with increasing deformation temperature or strain rate. 展开更多
关键词 flow stress dynamic recrystallization kinetics high strength steel constitutive model material constants
下载PDF
Present Situation of the Anti-Fatigue Processing of High-Strength Steel Internal Thread Based on Cold Extrusion Technology:A Review 被引量:5
12
作者 Hong MIAO Cheng JIANG +2 位作者 Sixing LIU Shanwen ZHANG Yanjun ZHANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期231-240,共10页
The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost an... The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost and low energy consumption. It has vast application foreground in the field of aviation, spaceflight, high speed train and etc. The internal thread processing and anti-fatigue manufacture technology are summarized. In terms of the perspective of processing quality and fatigue serving life, the advantages and disadvantages of the processing methods from are compared. The internal thread cold-extrusion processing technology is investigated for the purpose of improving the anti-fatigue serving life of internal thread. The superiorities of the plastic deformation law and surface integrity of the metal layer in the course of cold extrusion for improving its stability and economy are summed up. The proposed research forecasts the develop- ment tendency of the internal thread anti-fatigue manufacturing technology. 展开更多
关键词 high-strength steel · Internal thread · Coldextrusion · Anti-fatigue · Surface integrity
下载PDF
Properties of High Strength Steel Fiber Reinforced Concrete under Compression
13
作者 钱春香 IndubhushanPatnaikuni 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期130-136,共7页
This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and... This paper mainly discusses the properties of high strength steel fiber reinforced concrete under compression. Steel fibers with volume content of 1% do not display significant effect on the strain at peak stress and the area of the ascending portion of 展开更多
关键词 STEEL FIBER REINFORCED CONCRETE high strength stress strain PROPERTIES
下载PDF
Microstructural Transformation and Precipitation of an Ultra-high Strength Steel under Continuous Cooling
14
作者 陈永利 ZHAO Yang +1 位作者 ZHOU Xuejiao HUANG Jianguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期387-392,共6页
We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic obser... We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic observation was used to research the continuous cooling transformation(CCT)curve.Moreover,the microstructuraltransformation and precipitation law was revealed by morphologicalobservation and alloying elements by electron probe micro-analyzer(EPMA).Transmission electron microscopy(TEM)was utilized to analyze the composition and grain orientation of microstructure.The study showed that the measured criticaltransformation temperatures of Ac1 and Ac3 were 746 and 868 ℃,respectively.The CCT curve indicated that the undercooled austenite was transformed into proeutectoid ferrite and bainite with HV 520 in a broad range of cooling rate 0.1^(-1) ℃·s^(-1).When subjected to a cooling rate of 1 ℃·s^(-1),the undercooled austenite was divided into small-sized blocks by formed martensite.With further increase of cooling rate,micro-hardness increased dramatically,the microstructure of specimen was mainly lathe bainite(LB),granular bainite(GB),lath martensite(LM)and residualaustenite.By diffraction test analysis,it was identified that there was K-S orientation relationship between martensite and austenite for {110}_α//{111}_γ,{111}_α//{101}_γ.EPMA clearly showed that carbon diffused adequately due to staying for a long time at high temperature with a lower cooling rate of 2 ℃·s-1.Phase transition drive force was lower and the residualaustenite existed in the block form of Martensite austenite island(M-A).With the increase of cooling rate to 10 ℃·s^(-1),the block residualaustenite reduced,the carbon content of residualaustenite increased and α phase around the residualaustenite formed into a low carbon bainite form. 展开更多
关键词 ultra high strength steel continuous cooling transformation medium plate bainite martensite residual austenite
下载PDF
Experimental Study on Mechanical Properties of Q690 High-Strength Steel after High Cycle Fatigue Damage
15
作者 Ran Luo 《Open Journal of Applied Sciences》 2022年第2期243-255,共13页
Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load.... Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load. According to the fatigue cumulative damage method, the number of fatigue pre-damage vibration is designed in proportion. Then the fatigue pre-damage test is carried out on the high-strength steel, the stress-strain curve and the variation of residual mechanical property reduction coefficient with fatigue damage were drawn. The results show that: compared with the undamaged specimens, the yield strength and tensile strength of Q690 steel are less affected by fatigue damage, but the elongation changes more significantly, and the elastic modulus is not significantly affected. Finally, through the change of mechanical properties of Q690 high-strength steel with different fatigue damage, it provides a scientific basis for the performance evaluation of existing Q690 high-strength steel structure after fatigue damage. 展开更多
关键词 Q690 high-strength Steel Fatigue Damage Mechanical Property stress-Strain Curve Reduction Factor
下载PDF
Durability of Concrete Subjected to the Combined Actions of Flexural Stress,Freeze-thaw Cycles and Bittern Solutions 被引量:15
16
作者 余红发 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期893-900,共8页
Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated u... Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions. 展开更多
关键词 high strength concrete steel fiber reinforced high strength concrete chemicalattack stress corrosion freezing-thawing durability BITTERN
下载PDF
Friction Shear Stress on the Surface of Iron-Based Coating/HSS during Sliding Wear of Pin Disk
17
作者 Huajun Wang Kangkang Gan +2 位作者 Xiaoguang Zhou Songshan Yan Longfei Niu 《Journal of Applied Mathematics and Physics》 2017年第9期1694-1701,共8页
With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, w... With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction. 展开更多
关键词 high strength Steel IRON-BASED CLADDING SLIDING Wear FRICTION SHEAR stress Finite Element Analysis
下载PDF
基于MMC模型的Q460C高强结构钢延性断裂性能研究 被引量:1
18
作者 陈爱国 张佩雲 +1 位作者 蔺军 邢佶慧 《工程力学》 EI CSCD 北大核心 2024年第9期179-190,共12页
为研究Q460C高强结构钢的延性断裂性能,对处于不同应力状态的9个试件进行了单调加载断裂试验。采用修正加权平均(MWA)法获得了Q460C钢材直至断裂的全过程真实应力-真实应变曲线,通过编写MATLAB优化程序校准了VGM和MMC断裂预测模型的参... 为研究Q460C高强结构钢的延性断裂性能,对处于不同应力状态的9个试件进行了单调加载断裂试验。采用修正加权平均(MWA)法获得了Q460C钢材直至断裂的全过程真实应力-真实应变曲线,通过编写MATLAB优化程序校准了VGM和MMC断裂预测模型的参数。借助VUMAT子程序将相关参数代入ABAQUS/Explicit求解器模拟各试件的断裂行为,评估了两种断裂模型对各试件断裂预测的相对精度。通过对已有文献中两个圆周缺口试件的断裂模拟,验证了该文校准的MMC模型参数对Q460钢断裂预测的普适性。研究结果表明:采用MMC模型进行数值模拟得到的荷载-位移响应与试验结果吻合度较好,尤其是对纯剪和剪拉试件的断裂模拟;带应力软化的MMC模型可准确且形象地再现各试件的起裂和裂缝扩展;该文校准的MMC断裂模型参数对Q460钢材断裂行为预测具有相对较好的适用性。 展开更多
关键词 高强结构钢 延性断裂 应力状态 应力软化 裂纹扩展
下载PDF
起重船用高强钢大厚板焊接残余应力的试验研究
19
作者 王信 刘勇 王斌 《宇航材料工艺》 CAS CSCD 北大核心 2024年第3期98-102,共5页
以某型起重船结构为研究对象,采用焊接后热作为焊接残余应力消除措施,研究结构的残余应力情况及消除措施的有效性。首先采用焊态和经过焊接后热的两组试板进行焊接残余应力检测并对比,结果表明焊态的试板焊接纵向残余应力最高达552.5 M... 以某型起重船结构为研究对象,采用焊接后热作为焊接残余应力消除措施,研究结构的残余应力情况及消除措施的有效性。首先采用焊态和经过焊接后热的两组试板进行焊接残余应力检测并对比,结果表明焊态的试板焊接纵向残余应力最高达552.5 MPa,接近材料的屈服强度;经后热的试板纵向残余应力最大为385.3MPa,与焊态相比降低了167.2 MPa,下降约30%;同时获取了残余应力分布情况。进一步对起重船导向基座结构的焊缝进行后热并进行应力检测,其纵向焊接残余应力最大值为310.8 MPa,远低于母材屈服强度。本文研究表明:起重船高强钢大厚板在焊态时焊接残余应力较大,需采取措施消除残余应力;采用焊接后热可以大幅降低高强钢大厚板的焊接残余应力水平,焊接后热具有较好的经济性和操作便捷性,在起重船建造过程中建议考虑对大厚板焊缝进行后热以消除焊接残余应力消除。 展开更多
关键词 起重船 高强钢 焊接残余应力 后热
下载PDF
某跨声速风洞用980 高强度钢的去应力热处理工艺研究
20
作者 任国柱 田富竟 唐淋伟 《热加工工艺》 北大核心 2024年第17期149-151,共3页
热处理是结构件制造的重要环节,与结构件的制造质量和使用性能紧密相关。对某型号跨声速风洞用980高强度钢去应力热处理工艺进行了研究,采用拉伸试验和-20℃低温冲击试验,对比分析了一次、二次去应力退火试验后980高强度钢的强度和韧性... 热处理是结构件制造的重要环节,与结构件的制造质量和使用性能紧密相关。对某型号跨声速风洞用980高强度钢去应力热处理工艺进行了研究,采用拉伸试验和-20℃低温冲击试验,对比分析了一次、二次去应力退火试验后980高强度钢的强度和韧性。结果表明,当去应力热处理工艺为去应力退火温度为(450±10)℃,保温时间为10~12 h时,跨声速风洞用980高强度钢材料可获得最优的强度和韧性。试验结果对同类材料的去应力热处理具有一定的借鉴意义。 展开更多
关键词 980高强度钢 去应力热处理工艺 强度 韧性
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部