Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is ...Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is very significant to investigate the cause and control of transverse crack in repair welding. In this paper, both ends restraint crack experiment is developed to produce delay transverse crack for high strength steel. Metallographic results show that four types of cracks are found in repair welding metal zone and heat affected zone. Large chevron transverse cracks are found in repair welding zone. Lots of micro transverse cracks are found in inter-layer repair welding metal zone, root HAZ and two ends of repair welding individually. The distribution character and formation mechanism of the transverse crack are further analyzed through hardness testing and residual stress measurement.展开更多
采用TMCP(Thermo Mechanical Control Process)工艺制备了厚度100 mm的低合金高强度钢板,通过性能检验、光学显微镜和TEM研究了低压缩比控轧工艺对试验钢板不同厚度处力学性能及微观组织结构的影响。结果表明,在总压下率一样时,随着奥...采用TMCP(Thermo Mechanical Control Process)工艺制备了厚度100 mm的低合金高强度钢板,通过性能检验、光学显微镜和TEM研究了低压缩比控轧工艺对试验钢板不同厚度处力学性能及微观组织结构的影响。结果表明,在总压下率一样时,随着奥氏体再结晶区累积压下率增加,钢板不同厚度处性能差异减小。奥氏体再结晶区累积压下率达到50%时,奥氏体晶粒细化可充分渗透至中心部位,改善了组织的均匀性。未再结晶区压下率增加对特厚板中心部位组织转变影响较小,但使厚度1/4处组织细化并促进位错和析出相生成,间接增加了钢板不同厚度处的性能差异。提出了改善钢板不同厚度处力学性能均匀性的建议,对低压缩比高强度特厚钢板的低成本制造具有指导意义。展开更多
基金Tbis research is supported by National Science Foundation (No. 51105252) and by Harbin Creative Talent Tec, hnology Foundation (No. 2010RFQXGO05) and by Heilongjiang Province Education Foundation (No. 20100503066).
文摘Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is very significant to investigate the cause and control of transverse crack in repair welding. In this paper, both ends restraint crack experiment is developed to produce delay transverse crack for high strength steel. Metallographic results show that four types of cracks are found in repair welding metal zone and heat affected zone. Large chevron transverse cracks are found in repair welding zone. Lots of micro transverse cracks are found in inter-layer repair welding metal zone, root HAZ and two ends of repair welding individually. The distribution character and formation mechanism of the transverse crack are further analyzed through hardness testing and residual stress measurement.
文摘采用TMCP(Thermo Mechanical Control Process)工艺制备了厚度100 mm的低合金高强度钢板,通过性能检验、光学显微镜和TEM研究了低压缩比控轧工艺对试验钢板不同厚度处力学性能及微观组织结构的影响。结果表明,在总压下率一样时,随着奥氏体再结晶区累积压下率增加,钢板不同厚度处性能差异减小。奥氏体再结晶区累积压下率达到50%时,奥氏体晶粒细化可充分渗透至中心部位,改善了组织的均匀性。未再结晶区压下率增加对特厚板中心部位组织转变影响较小,但使厚度1/4处组织细化并促进位错和析出相生成,间接增加了钢板不同厚度处的性能差异。提出了改善钢板不同厚度处力学性能均匀性的建议,对低压缩比高强度特厚钢板的低成本制造具有指导意义。