The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te...The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.展开更多
This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microa...This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microarc calcium-phosphate coating. The titanium layer is deposited from plasma of continuous vacuum-arc discharge, and calcium-phosphate coating is formed by the microarc oxidation technique. The purpose of the hybrid method is to combine the properties of good strength stainless steel with high bioactivity of calcium-phosphate coating. This paper describes the chemical composition, morphology characteristics, adhesion and the ability of the formed biocomposites to stimulate the processes of osteoinduction. It is expedient to use such biocomposites for implants which carry heavy loads and are intended for long-term use, e.g. total knee endoprosthesis.展开更多
The grain structures and the precipitates in the solidification microstructure of the ultra pure 17 wt% Cr ferritic stainless steels with different Ti and/or Nb micro-alloying were investigated both experimentally and...The grain structures and the precipitates in the solidification microstructure of the ultra pure 17 wt% Cr ferritic stainless steels with different Ti and/or Nb micro-alloying were investigated both experimentally and theoretically. It was found by the grain structure observation that the addition of Ti or Nb to the steel reduced the grain size (D) and elongation factor (E), and improved the equiaxed grain proportion (P) and globularity factor (£). Among the four steels studied, the minimum grain size and maximum equiaxed grain proportion were obtained by jointly adding both Ti and Nb to the steel. The SEM observation indicated that several kinds of precipitations, such as TiN, MC (rich in Nb), Laves phase (Fe2Nb) and so on, formed in the corresponding steels. In addition, the results calculated using the Thermo-Calc software illustrated that TiN precipitates in the liquid at proper Ti and N contents. Meanwhile, the solidification interval (△T) was enlarged by the addition of Ti or Nb, and the effectiveness of Nb was stronger than Ti. Based on the experimental and calculation results, the mechanisms of grain refinement and increment in equiaxed grain proportion were discussed.展开更多
The strengthening mechanisms of hot-rolled steels micro alloyed with Ti (ST-TQS00) and Nh Ti (NT TQ500) were investigated by examining the microstructures of steels using optical microscope (OM), scanning elec t...The strengthening mechanisms of hot-rolled steels micro alloyed with Ti (ST-TQS00) and Nh Ti (NT TQ500) were investigated by examining the microstructures of steels using optical microscope (OM), scanning elec tron microscope (SEM) and transmission electron microscope (TEM). The results revealed ahnost no differences in the solute solution strengthening and fine grained strengthcning of the two steels, whereas the contributions of pre cipitation strengthening and dislocation strengthening were different for ST-TQ500 and NT-TQ500. The measured precipitation strengthening effect of ST-TQ500 was 88 MPa higher than that of NT-TQ500: this difference was pri marily attributed to the stronger precipitation effect of thc Ti-containing nanoscale particles. The dislocation strengthening effect of ST TQ500 was approximately 80 MPa lower than that of NT-TQ500. This is tbought to be related to differences in deformation behavior during the finishing rolling stage; the inhibition of dynamic recrystallization from Nb in NT-TQ500 (Nb-Ti) may lead to higher density of dislocations in the microstructure.展开更多
基金Item Sponsored by National Key Fundamental Research and Development Project of China(G1998061503)National Science and Technology Development Project of China(2002BA314B08)
文摘The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.
文摘This study reports a hybrid method which allows the formation of biocomposites on stainless steel implants. The main idea of the method is to create multilayer coatings consisting of titanium primer layer and a microarc calcium-phosphate coating. The titanium layer is deposited from plasma of continuous vacuum-arc discharge, and calcium-phosphate coating is formed by the microarc oxidation technique. The purpose of the hybrid method is to combine the properties of good strength stainless steel with high bioactivity of calcium-phosphate coating. This paper describes the chemical composition, morphology characteristics, adhesion and the ability of the formed biocomposites to stimulate the processes of osteoinduction. It is expedient to use such biocomposites for implants which carry heavy loads and are intended for long-term use, e.g. total knee endoprosthesis.
基金the National Natural Science Foundation of China (No. 50734002) for the financial support of this work
文摘The grain structures and the precipitates in the solidification microstructure of the ultra pure 17 wt% Cr ferritic stainless steels with different Ti and/or Nb micro-alloying were investigated both experimentally and theoretically. It was found by the grain structure observation that the addition of Ti or Nb to the steel reduced the grain size (D) and elongation factor (E), and improved the equiaxed grain proportion (P) and globularity factor (£). Among the four steels studied, the minimum grain size and maximum equiaxed grain proportion were obtained by jointly adding both Ti and Nb to the steel. The SEM observation indicated that several kinds of precipitations, such as TiN, MC (rich in Nb), Laves phase (Fe2Nb) and so on, formed in the corresponding steels. In addition, the results calculated using the Thermo-Calc software illustrated that TiN precipitates in the liquid at proper Ti and N contents. Meanwhile, the solidification interval (△T) was enlarged by the addition of Ti or Nb, and the effectiveness of Nb was stronger than Ti. Based on the experimental and calculation results, the mechanisms of grain refinement and increment in equiaxed grain proportion were discussed.
基金Item Sponsored by National Natural Science Foundation of China(51374151)Foundation for Key Program of Shanxi Province of China(20111101053)Foundation for Major Coal Base New Materials Program of Shanxi Province of China(MC2014-02)
文摘The strengthening mechanisms of hot-rolled steels micro alloyed with Ti (ST-TQS00) and Nh Ti (NT TQ500) were investigated by examining the microstructures of steels using optical microscope (OM), scanning elec tron microscope (SEM) and transmission electron microscope (TEM). The results revealed ahnost no differences in the solute solution strengthening and fine grained strengthcning of the two steels, whereas the contributions of pre cipitation strengthening and dislocation strengthening were different for ST-TQ500 and NT-TQ500. The measured precipitation strengthening effect of ST-TQ500 was 88 MPa higher than that of NT-TQ500: this difference was pri marily attributed to the stronger precipitation effect of thc Ti-containing nanoscale particles. The dislocation strengthening effect of ST TQ500 was approximately 80 MPa lower than that of NT-TQ500. This is tbought to be related to differences in deformation behavior during the finishing rolling stage; the inhibition of dynamic recrystallization from Nb in NT-TQ500 (Nb-Ti) may lead to higher density of dislocations in the microstructure.