期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Disturbance failure mechanism of highly stressed rock in deep excavation:Current status and prospects 被引量:1
1
作者 Tao Wang Weiwei Ye +3 位作者 Liyuan Liu Kai Liu Naisheng Jiang Xianhui Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期611-627,共17页
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre... This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions. 展开更多
关键词 deep rock with high stress highly stressed rock rock failure residual stress energy release
下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
2
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
The test research on partial relieving pressure for the entry in the deep mine under high stress and friable surrounding rock
3
作者 杜计平 候朝炯 +1 位作者 朱亚平 郝明奎 《Journal of Coal Science & Engineering(China)》 2007年第3期359-361,共3页
Based on the geological condition of Zhangxiaolou deep mine in Xuzhou mining area, under 986 m in depth, 20.6-31.6 MPa in maximum horizontal principal stress, and friable and fractured surrounding rock, test researche... Based on the geological condition of Zhangxiaolou deep mine in Xuzhou mining area, under 986 m in depth, 20.6-31.6 MPa in maximum horizontal principal stress, and friable and fractured surrounding rock, test researches on partial relieving pressure were completed for the entry with U-steel arched yielding support. The relieving pressure parameters, technology process and results of springing blasting by boreholes and excavating pockets in the two sides of entry were introduced. It is demonstrated that springing will not be shaped under the condition of single borehole arrangement after exploded, the arrangement by a group, it will make borehole bottom form springing in 0.6-0.8 m in diameter, that convergence of two sides and roof to floor have some increments by using springing blasting for reliving pressure. This kind of method for reliving pressure is not suitable to use in the deep mine, and that the convergence of two sides obviously declined by excavating pocket in two sides, it can be still used in the entry with metal support, while maintenance of entry in deep mines is difficult, and can not be supported by bolt or bolt with wire mesh. 展开更多
关键词 deep mine high stress friable and fractured surrounding rock ENTRY springing blasting relieving pressure excavating pocket relieving pressure
下载PDF
Comprehensive safety factor of roof in goaf underdeep high stress 被引量:9
4
作者 JIANG Li-chun JIAO Hua-zhe +1 位作者 WANG Yu-dan WANG Ge-ge 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期595-603,共9页
The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and th... The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state. 展开更多
关键词 deep mining high stress hingeless arch comprehensive safety factor stope span
下载PDF
Gas seepage equation of deep mined coal seams and its application 被引量:30
5
作者 HU Guo-zhong WANG Hong-tu TAN Hai-xiang FAN Xiao-gang YUAN Zhi-gang 《Journal of China University of Mining and Technology》 EI 2008年第4期483-487,共5页
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se... In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams. 展开更多
关键词 deep mining in-situ stress field geothermal temperature field gas seepage equation of coal seam gas pressure
下载PDF
Mechanical behaviors of coal measures and ground control technologies for China's deep coal mines-A review 被引量:11
6
作者 Hongpu Kang Fuqiang Gao +1 位作者 Gang Xu Huaiwei Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期37-65,共29页
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects... This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces. 展开更多
关键词 deep underground coal mine Mechanical behavior Mining-induced stress Mining-induced fractures Ground control for roadways Ground control for working face
下载PDF
Numerical simulation and experiment analysis of improving permeability by deep-hole presplitting explosion in high gassy and low permeability coal seam 被引量:6
7
作者 CAI Feng LIU Ze-gong +1 位作者 LIN Bai-quan LI Wei 《Journal of Coal Science & Engineering(China)》 2009年第2期175-180,共6页
Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explo... Created a new damage model for explosive for LS-DYNA3D,taking advantageof the Taylor method aimed at the high gassy and low permeability coal seam,and numericallysimulated and analyzed the deep-hole presplitting explosion.The entire processof explosion was represented,including cracks caused by dynamic pressure,transmissionand vibration superposition of stress waves,as well as cracks growth driven by gas generatedby explosion.The influence of the cracks generated in the process of explosion andthe performance of improving permeability caused by the difference of interval between.explosive holes were analyzed.A reasonable interval between explosive holes of deepholepresplitting explosions in high gassy and low permeability coal seams was proposed,and the resolution of gas drainage in high gassy and low permeability coal seam was putforward. 展开更多
关键词 high gassy and low permeability coal seam deep-hole presplitting explosion stress wave crack growth
下载PDF
Investigation of stability of a tunnel in a deep coal mine in China 被引量:10
8
作者 Kulatilake P.H.S.W. Wu Qiong +1 位作者 Yu Zhengxing Jiang Fuxing 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期567-577,共11页
Stability level of tunnels that exist in an underground mine has a great influence on the safety,production and economic performance of mines.Ensuring of stability for soft-rock tunnels is an important task for deep c... Stability level of tunnels that exist in an underground mine has a great influence on the safety,production and economic performance of mines.Ensuring of stability for soft-rock tunnels is an important task for deep coal mines located in high in situ stress conditions.Using the available information on stratigraphy,geological structures,in situ stress measurements and geo-mechanical properties of intact rock and discontinuity interfaces,a three-dimensional numerical model was built by using 3DEC software to simulate the stress conditions around a tunnel located under high in situ stress conditions in a coal rock mass in China.Analyses were conducted for several tunnel shapes and rock support patterns.Results obtained for the distribution of failure zones,and stress and displacement felds around the tunnel were compared to select the best tunnel shape and support pattern to achieve the optimum stability conditions. 展开更多
关键词 coal mine Tunnel stability high in situ stress Numerical modeling 3DEC
下载PDF
Study on mechanism and practice of surrounding rock control of high stress coal roadway
9
作者 王卫军 杨磊 欧阳广斌 《Journal of Coal Science & Engineering(China)》 2006年第2期6-10,共5页
The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principl... The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully. 展开更多
关键词 high stress coal roadway surrounding rock control
下载PDF
Support technology of deep roadway under high stress and its application 被引量:9
10
作者 Cao Rihong Cao Ping Lin Hang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期787-793,共7页
Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stab... Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value. 展开更多
关键词 deep roadway Floor heave high stress SUPPORT Steel beam
下载PDF
Dynamic characteristics of high stressed red sandstone subjected to unloading and impact loads 被引量:12
11
作者 GONG Feng-qiang ZHONG Wen-hui +2 位作者 GAO Ming-zhong SI Xue-feng WU Wu-xing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期596-610,共15页
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension... In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design. 展开更多
关键词 deep rock excavation unloading unloading confining pressure three-dimensional high stress strengthweakening effect impact disturbance
下载PDF
Deformation mechanism of high-stress and broken-expansion surrounding rock and supporting optimization based on the gray correlation theory 被引量:6
12
作者 余伟健 WANG Ping DU Shao-hua 《Journal of Chongqing University》 CAS 2014年第3期99-114,共16页
Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deform... Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d. 展开更多
关键词 deep high stress broken-expansion surrounding rock deformation and failure of roadways gray correlation theory
下载PDF
Theory and application of rock burst prevention using deep hole high pressure hydraulic fracturing 被引量:3
13
作者 Shan-Kun ZHAO Jun LIU +3 位作者 Xiang-Zhi WEI Chuan-Hong DING Yu-Lei LV Gang-Feng LI 《Journal of Coal Science & Engineering(China)》 2013年第2期136-142,共7页
In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u... In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region. 展开更多
关键词 rock burst deep hole high pressure hydraulic fracturing seepage-stress coupling models stress concentration factor
下载PDF
New mining technique with big panels and stopes in deep mine 被引量:3
14
作者 王贻明 吴爱祥 +2 位作者 陈学松 杨保华 苏永定 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第1期183-189,共7页
For the purpose to suit the bad mining technical conditions,such as deep imbed,gentle dip angle,and high initial stress in Dongguashan deposit,the stoping scheme was optimized.The new mining technique,with temporary c... For the purpose to suit the bad mining technical conditions,such as deep imbed,gentle dip angle,and high initial stress in Dongguashan deposit,the stoping scheme was optimized.The new mining technique,with temporary curtain walls,large panels and stopes,was achieved as well.The deposit model,which was built through the DATAMINE,was led into FLAC3D for numerical simulation.Based on these,the stabilities of pillars and stopes were analyzed.On the other hand,the impact of output stability by new scheme was verified with the help of optimization planning theory.The results show that stopes and curtain walls are safe when the width of temporary curtain walls between panels are 18 m.The length and width of stope increase to 78 m(82 m)and 18 m respectively,and those of panel increase to 300-500 m and 100 m respectively.The commercial test indicates that the new scheme can attain the aims of simpler production organization,better stope ventilation and work condition,smaller quantities of development and cutting,and 2/3 of equipments as before with the stable output.The pillar stoping technique is credible and valuable. 展开更多
关键词 回采计划 采矿技术 深矿山 技术类型
下载PDF
Study on Asymmetric Deformation Law and Surrounding Rock Control Technology of High Stress Soft Rock Crossing Roadway
15
作者 Linhao Zhang 《World Journal of Engineering and Technology》 2023年第2期353-369,共17页
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C... In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions. 展开更多
关键词 deep high stress Soft Rock Penetration Asymmetric Deformation Support FLAC3D
下载PDF
Discovery and geological knowledge of the large deep coal-formed Qingyang Gas Field, Ordos Basin, NW China
16
作者 FU Jinhua WEI Xinshan +6 位作者 LUO Shunshe ZUO Zhifeng ZHOU Hu LIU Baoxian KONG Qingfen ZHAN Sha NAN Junxiang 《Petroleum Exploration and Development》 2019年第6期1111-1126,共16页
After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and co... After 50 years of oil and gas exploration in Longdong area of southwest Ordos Basin,NW China,a deep coal-formed gas field was discovered for the first time in Qingyang area.Through observation of field outcrops and core,analysis of common,cast and cathode thin sections,Ro and other geochemistry indexes,carbon isotope,electron microscope and other supporting tests and analyses,the hydrocarbon generation,reserves formation and reservoir formation characteristics of gas reservoirs at different buried depths in Yishaan slope were examined and compared.The deep gas reservoir has an average buried depth of more than 4200 m,and the main gas-bearing formation is the Member 1 of Lower Permian Shanxi Formation,which is characterized by low porosity,low permeability,low pressure and low abundance.It is believed that hydrocarbon generation in thin seam coal source rocks with high thermal evolution can form large gas fields,high-quality sandstone reservoirs with dissolved pores,intergranular pores and intercrystalline pores can still develop in late diagenetic stage under deep burial depth and high thermal evolution,and fractures improve the permeability of reservoirs.High drying coefficient of natural gas and negative carbon isotope series are typical geochemical characteristics of deep coal-formed gas.The integrated exploration and development method has been innovated,and the economic and effective development mode of gas fields of"dissecting sand body by framework vertical wells,centralized development by horizontal wells"has been formed.The discovery and successful exploration of the large gas field has provided geological basis and technical support for the construction of natural gas fields of 100 billion cubic meter scale in the southwest of the basin,and has important guidance for exploration of coal-derived gas with deep buried depth and high thermal evolution widely distributed in China. 展开更多
关键词 Ordos Basin Upper Paleozoic Lower Permian coal-formed GAS deep formation high thermal evolution Qingyang LARGE GAS field
下载PDF
Bolt-grouting combined support technology in deep soft rock roadway 被引量:12
17
作者 Chen Yanlong Meng Qingbin +2 位作者 Xu Guang Wu Haoshuai Zhang Guimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期777-785,共9页
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined... Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed. 展开更多
关键词 deep soft rock roadway Bolt-grouting support Numerical simulation Similar material simulation high stress
下载PDF
Pressure-relief and permeability-increase technology of high liquid–solid coupling blast and its application 被引量:3
18
作者 Hao Zhiyong Zhou Chao +2 位作者 Lin Baiquan Pang Yuan Li Ziwen 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期45-49,共5页
As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-... As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-increase technology of the high liquid–solid coupling blast.Through coal seam injection and charging structure change,the paper fully works out the dual functions of the water and explosion.Using the theoretical calculation,numerical simulation and physical experiments,we obtained that the initial blasting stress,displacement and overpressure of the liquid–solid coupling blast are much better than that of ordinary blasting.The technology has been used in the relative coal mine,and the application results show that the technique has effectively prevented the coal and gas outburst,which has a wide range of application. 展开更多
关键词 high stress high gasLow permeability coal seamLiquid-solid coupling blast
下载PDF
Study and practice of the controlling technique on heat-harm during the tunneling in Zhaolou mine
19
作者 Liu Heqing Hao Xiaoli +2 位作者 Wang Yongjie Dai Huadong Lin Qiguo 《Engineering Sciences》 EI 2008年第4期31-35,共5页
This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since co... This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions. 展开更多
关键词 deep mine with high temperature mine development tunneling coaling
下载PDF
基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类 被引量:11
20
作者 张成业 李飞跃 +4 位作者 李军 邢江河 杨金中 郭俊廷 杜守航 《煤田地质与勘探》 CAS CSCD 北大核心 2022年第6期94-103,共10页
遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等... 遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等方法进行对比。首先,制作高分辨率影像样本数据,通过敏感性测试确定适合研究区露天煤矿场景的样本最佳裁剪尺寸和方式;然后,训练深度神经网络DeepLabv3+模型,进行土地利用识别实验;最后,比较不同方法的识别结果。结果表明:研究区露天煤矿场景下的样本最佳裁剪尺寸为512像素×512像素,最佳裁剪方式为随机裁剪。采用的DeepLabv3+模型对露天煤矿区土地利用识别的总体精度、Kappa系数分别为80.10%、0.73,均优于U-Net、FCN、随机森林、支持向量机、最大似然法等方法的识别精度。DeepLabv3+模型的识别速度与上述5种方法保持在同一数量级,验证了DeepLabv3+模型和GF-2卫星影像在露天煤矿区土地利用识别中的可行性,对露天煤矿区生态环境监测与修复规划具有重要意义。 展开更多
关键词 露天煤矿区 土地利用 高分辨率影像 深度学习 神经网络 高分二号卫星 自动识别 识别精度
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部