期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses 被引量:3
1
作者 邹金锋 童无欺 赵健 《Journal of Central South University》 SCIE EI CAS 2012年第5期1419-1424,共6页
Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the ... Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing. 展开更多
关键词 energy dissipation energy conservation large strain cavity expansion high stress
下载PDF
Disturbance failure mechanism of highly stressed rock in deep excavation:Current status and prospects
2
作者 Tao Wang Weiwei Ye +3 位作者 Liyuan Liu Kai Liu Naisheng Jiang Xianhui Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期611-627,共17页
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre... This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions. 展开更多
关键词 deep rock with high stress highly stressed rock rock failure residual stress energy release
下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
3
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
Resistance index and browning mechanism of apple peel under high temperature stress
4
作者 Hui Wang Shuhui Zhang +8 位作者 Zidun Wang Dongmei Li Leiyu Yan Yifeng Feng Xiaojie Liu Rongxin Chen Wenmin Fan Lulong Sun Zhengyang Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期305-317,共13页
Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect no... Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future. 展开更多
关键词 Malus domestica Borkh high temperature stress PEEL BROWNING MdPPO1
下载PDF
Potassium alleviated high nitrogen-induced apple growth inhibition by regulating photosynthetic nitrogen allocation and enhancing nitrogen utilization capacity
5
作者 Xinxiang Xu Guangyuan Liu +10 位作者 Jingquan Liu Mengxue Lyu Fen Wang Yue Xing Hao Meng Min Li Yu Jiang Ge Tian Zhanling Zhu Yuanmao Jiang Shunfeng Ge 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期1-14,共14页
There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular c... There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular changes in M9T337 apple(Malus domestica)rootstocks under different nitrate(10 and 30 mmol·L^(-1)NO_(3)^(-))and K supply(0.5,6,10,and 20 mmol·L_(-1)K^(+))conditions.Results revealed that high nitrate inhibited the root growth of M9T337 rootstocks,downregulated the expressions of K transporter genes(MdPT5,MdHKT1,and MdATK1),and reduced the net NO3-and K+influx at the surface of roots,thereby resulting in an N/K imbalance in rootstocks.Further investigation showed that 10 mmol·L^(-1)K increased the activity of N metabolic enzymes(NR,GS,NiR,and GOGAT),upregulated the expressions of genes related to nitrate uptake and transport(MdNRT1.1,MdNRT1.2,MdNRT1.5,and MdNRT2.4),promoted15N transport from the roots to the shoots,optimized leaf N distribution,and improved photosynthetic N utilization efficiency under high nitrate conditions.These results suggest that the negative effects of high nitrate may be related to the N/K imbalance and that reducing N/K in plants by increasing K supply level can effectively alleviate the inhibition of N assimilation by high nitrate stress. 展开更多
关键词 Apple rootstock K level high nitrate stress N metabolism ^(15)N
下载PDF
Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage 被引量:2
6
作者 JI Dongling XIAO Wenhui +8 位作者 SUN Zhiwei LIU Lijun GU Junfei ZHANG Hao Matthew Tom HARRISON LIU Ke WANG Zhiqin WANG Weilu YANG Jianchang 《Rice science》 SCIE CSCD 2023年第6期598-612,共15页
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for... Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future. 展开更多
关键词 rice early panicle initiation stage high temperature stress carbon-nitrogen translocation grain yield grain quality
下载PDF
Triaxial creep damage characteristics of sandstone under high crustal stress and its constitutive model for engineering application 被引量:1
7
作者 Dongxu Chen Laigui Wang +1 位作者 Pierre Darry Versaillot Chuang Sun 《Deep Underground Science and Engineering》 2023年第3期262-273,共12页
The creep characteristics of rock under high crustal stress are of important influence on the long‐term stability of deep rock engineering.To study the creep characteristics and engineering application of sandstone u... The creep characteristics of rock under high crustal stress are of important influence on the long‐term stability of deep rock engineering.To study the creep characteristics and engineering application of sandstone under high crustal stress,this study constructed nonlinear creep damage(NCD)constitutive mode based on the triaxial graded loading‒unloading creep test of sandstone in the Yuezhishan Tunnel.A numerical NCD constitutive model and a breakable lining(BL)model were developed based on FLAC3D and then applied to the stability analysis of the Yuezhishan Tunnel.Based on the creep test results of sandstone,a power function of creep rate and stress level was constructed,by which the long‐term strength was solved.The results show that the long‐term strength of the red sandstone based on the related function of the steady‐state creep rate and stress level is close to the measured stress value in engineering.The NCD model considering damage factors reflects the instantaneous and viscoelastic plasticity deformation characteristics of the red sandstone.The numerical NCD constitutive model and the BL model can reflect surrounding rock deformation characteristics and lining failure characteristics in practical engineering.The research results provide theoretical references for long‐term stability analysis of rock engineering and the deformation control of surrounding rock under high crustal stress. 展开更多
关键词 creep damage model high stress long‐term strength secondary development tunnel engineering
下载PDF
Metabolomics of astaxanthin hyperaccumulation in Haematococcus pluvialis under high light stress
8
作者 Yong DOU Jiayi LI Wenli ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1876-1886,共11页
Variation in metabolite profiles of Haematococcus pluvialis(a type of unicellular green algal)under light stress is a key issue of study at the present.To investigate the effect of light intensity on accumulation of a... Variation in metabolite profiles of Haematococcus pluvialis(a type of unicellular green algal)under light stress is a key issue of study at the present.To investigate the effect of light intensity on accumulation of astaxanthin in H.pluvialis,a 26-day batch culture experiment of H.pluvialis under the light intensity levels at 73,127,182,236,and 291μmol/(m^(2)·s)was conducted.Therefore,the optimal light intensity and the corresponding metabolic pathways of accumulation in H.pluvialis were determined.Results show that 236μmol/(m^(2)·s)was the optimum light intensity to induce astaxanthin accumulation,at which a maximum content of 9.01 mg/L was achieved on Day 24.A total of 132 metabolites were identified and quantified,of which 38 differential metabolites were highlighted and classified,including 3 fatty acids or intermediates,5 amino acids or derivatives,5 carbohydrates or intermediates,16nucleoside derivatives,and 9 other metabolites using LC-MS/MS technique.Subsequently,16 statistically significant differential metabolic pathways were enriched and annotated based on Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis between the control and the 236μmol/(m^(2)·s)treatment group(P<0.05).In addition,the bioprocesses included cellular basal metabolism and signaling systems,such as carbohydrate metabolism,amino acid metabolism,glycerol and derivatives metabolism,nucleotide and derivative metabolism,and inositol phosphate metabolism were activated and regulated under strong light stress conditions.Moreover,4 hub metabolites containing D-glucose-6-phosphate,L-tyrosine,glycerol-3-phosphate,and L-glutamine were identified,based on which the associated metabolic network was constructed.The study provided a metabolomic view of astaxanthin accumulation in H.pluvialis under strong light stress. 展开更多
关键词 Haematococcus pluvialis ASTAXANTHIN high light stress metabolomic analysis
下载PDF
Study on Asymmetric Deformation Law and Surrounding Rock Control Technology of High Stress Soft Rock Crossing Roadway
9
作者 Linhao Zhang 《World Journal of Engineering and Technology》 2023年第2期353-369,共17页
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C... In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions. 展开更多
关键词 Deep high Stress Soft Rock Penetration Asymmetric Deformation Support FLAC3D
下载PDF
Fatigue reliability quantitative analysis of cement concrete for highway pavement under high stress ratio 被引量:5
10
作者 薛彦卿 黄晓明 +2 位作者 钱吮智 马涛 邹湘衡 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期94-99,共6页
In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue ... In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer. 展开更多
关键词 cement concrete fatigue life fatigue damage probability density function high stress ratio fatigue reliability
下载PDF
Effects of High Light Stress on Chlorophyll-protein Complexes of Two Subspecies of Rice 被引量:10
11
作者 辛越勇 冯丽洁 +3 位作者 许亦农 焦德茂 李良璧 匡廷云 《Acta Botanica Sinica》 CSCD 2000年第12期1278-1284,共7页
Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoin... Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice. 展开更多
关键词 high light stress subspecies of rice excitation energy distribution chlorophyll_protein comp(
下载PDF
Numerical simulation of optimum mining design for high stress hard-rock deposit based on inducing fracturing mechanism 被引量:3
12
作者 姚金蕊 马春德 +1 位作者 李夕兵 杨金林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2241-2247,共7页
The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri... The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order. 展开更多
关键词 inducted fracturing high stress hard-rock deposit excavation case roadheader excavation numerical simulation
下载PDF
Effects of Short-term High Temperature Stress on the Photosynthesis of Potato in Different Growth Stages 被引量:3
13
作者 王连喜 金鑫 +3 位作者 李剑萍 马国飞 曹宁 李琪 《Agricultural Science & Technology》 CAS 2011年第3期317-321,342,共6页
[Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ni... [Objective] The aim was to study the effects of short-term high temperature stress on the photosynthesis of potato in different growth stages. [Method] Choosing powder potato named Longshu No.3 widely cultivated in Ningxia as test material,the changes of stomata conductance (Gs),transpiration rate (Tr) and CO2 concentration difference between internal and external leaf chamber,net photosynthetic rate (Pn) and photosynthetic water use efficiency (WUE) in different growth stages under short-term high temperature were analyzed. [Result] During seedling stage,the hysteretic nature of net photosynthetic rate and CO2 concentration difference between internal and external leaf chamber of potato could be found under high temperature stress,while the change trends of stomata conductance and transpiration rate under high temperature stress were consistent to that at normal temperature,but stomata conductance and transpiration rate were higher than those at normal temperature,and CO2 concentration difference between internal and external leaf chamber affected net photosynthetic rate most obviously. During branching stage,the change trends of net photosynthetic rate,CO2 concentration difference between internal and external leaf chamber,stomata conductance and transpiration rate under high temperature stress and normal temperature were similar,but they changed abruptly and reached peak value at noon under high temperature stress,while there existed consistent variation of water use efficiency under high temperature stress and at normal temperature,and CO2 concentration difference between internal and external leaf chamber also affected net photosynthetic rate most greatly,next came transpiration rate. [Conclusion] High temperature stress affected the photosynthesis of potato in different growth stages,and it was more obvious during branching stage than seedling stage,while CO2 concentration difference between internal and external leaf chamber had the most important influence on net photosynthetic rate. 展开更多
关键词 POTATO Different growth stages high temperature stress PHOTOSYNTHESIS
下载PDF
Effects of High Temperature Stress on Growth of Stress-Tolerant Rice Seedlings with Resistibility 被引量:4
14
作者 张晓晶 张思远 +1 位作者 李春青 张文会 《Agricultural Science & Technology》 CAS 2014年第4期576-578,584,共4页
Two heat-tolerant rice varieties, N5 and TQ, were chosen as test materi- als. Specifically, rice seedlings (leaf age at 2.1), cultivated in room, were treated at 40 ℃ for 7 d and some indices were measured, includi... Two heat-tolerant rice varieties, N5 and TQ, were chosen as test materi- als. Specifically, rice seedlings (leaf age at 2.1), cultivated in room, were treated at 40 ℃ for 7 d and some indices were measured, including plant height, dry weight, leaf color, proline, malondialdehyde and conductivity. The results showed that high temperature advanced the growth of N5 seedlings, for example, plant height, root length and dry weight of ground parts all increased. However, high temperature prevented TQ seedlings growth, plant height in particular. Furthermore, high temper- ature treatment increased the content of chlorophyll of N5 and had none effects on PSII of N5, with little damages on membrane system. On the other hand, high temperature actually reduced PSII activity of TQ, and seriously damaged TQ mem- brane system. It is speculated that the differences of the two varieties lie on pro- duction or removing capacity of reactive oxide species. 展开更多
关键词 high temperature stress Rice seedlings TOLERANCE
下载PDF
Effect of High-Gate-Voltage Stress on the Reverse Gated-Diode Current in LDD nMOSFET’s 被引量:2
15
作者 陈海峰 郝跃 马晓华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期875-878,共4页
The reverse generation current under high-gate-voltage stress condition in LDD nMOSFET's is studied. We find that the generation current peak decreases as the stress time increases. We ascribe this finding to the dom... The reverse generation current under high-gate-voltage stress condition in LDD nMOSFET's is studied. We find that the generation current peak decreases as the stress time increases. We ascribe this finding to the dominating oxide trapped electrons that reduce the effective drain bias, lowering the maximal generation rate. The density of the effective trapped electrons affecting the effective drain bias is calculated with our model. 展开更多
关键词 generation current high gate voltage stress trapped electron
下载PDF
Assessment of High Temperature Tolerance of Two Dactylis glomerata Materials 被引量:1
16
作者 蔡化 张鹤山 +3 位作者 田宏 熊军波 陈明新 刘洋 《Agricultural Science & Technology》 CAS 2013年第11期1563-1565,1635,共4页
The high temperature tolerance of two Dactylis glomerata materials, D. glom-erata cv. Baoxing and D. glomerata cv. Jinsiling, was evaluated under artificial con-ditions. The relative conductance rate, free proline con... The high temperature tolerance of two Dactylis glomerata materials, D. glom-erata cv. Baoxing and D. glomerata cv. Jinsiling, was evaluated under artificial con-ditions. The relative conductance rate, free proline content and SOD activity in seedling leaves was detected. Results showed that with the increase of temperature, the relative conductance rate and free proline content increased in both two materi-als, while the activity of SOD increased first and then decreased, indicating that the two materials had heat-resistant mechanism. D. glomerata cv. Baoxing presented slightly higher resistance against high temperature under experimental conditions compared with D. glomerata cv. Jinsiling. 展开更多
关键词 Dactylis glomerata L. Seedling leaves high temperature stress
下载PDF
Rate transient analysis methods for water-producing gas wells in tight reservoirs with mobile water
17
作者 Qingyan Yu Ying Jia +2 位作者 Pengcheng Liu Xiangyang Hu Shengye Hao 《Energy Geoscience》 EI 2024年第1期311-320,共10页
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves... Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water. 展开更多
关键词 Gas reservoirs with mobile water Gas-water two phase flow high stress sensitivity Equivalent homogenous phase Rate transient analysis
下载PDF
Morphology and Genetics of Rice in Response to High Temperature at Flowering Period
18
作者 谭江 李小湘 +4 位作者 潘孝武 刘文强 闵军 刘三雄 黎用朝 《Agricultural Science & Technology》 CAS 2012年第10期2117-2122,共6页
High temperature stress is one of major abiotic stresses limiting rice productivity,especially at the flowering period.Understanding mechanisms of rice adaptation to heat stress would facilitate the development of hea... High temperature stress is one of major abiotic stresses limiting rice productivity,especially at the flowering period.Understanding mechanisms of rice adaptation to heat stress would facilitate the development of heat-tolerance cultivars for improving yield in a warmer world.Rice heat stress responses are very complex.Interactions between structure,function and the environment need to be investigated at the apparent and molecular levels in order to obtain a full picture.In this review,we summarized the current knowledge on the morphology and genetic basis of heat tolerance in reproductive tissues of rice at the flowering time,and some morphologic characters for increasing thermotolerance in rice via conventional breeding are outlined. 展开更多
关键词 high temperature stress RICE FLOWERING MORPHOLOGY GENETICS
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
19
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading 被引量:18
20
作者 YIN Zhi-qiang LI Xi-bing +2 位作者 JIN Jie-fang HE Xian-qun DU Kun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期175-184,共10页
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st... The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress. 展开更多
关键词 high stress coupled static and dynamic loading impact disturbance high-speed photography
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部