期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Disturbance failure mechanism of highly stressed rock in deep excavation:Current status and prospects
1
作者 Tao Wang Weiwei Ye +3 位作者 Liyuan Liu Kai Liu Naisheng Jiang Xianhui Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期611-627,共17页
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre... This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions. 展开更多
关键词 deep rock with high stress highly stressed rock rock failure residual stress energy release
下载PDF
Resistance index and browning mechanism of apple peel under high temperature stress
2
作者 Hui Wang Shuhui Zhang +8 位作者 Zidun Wang Dongmei Li Leiyu Yan Yifeng Feng Xiaojie Liu Rongxin Chen Wenmin Fan Lulong Sun Zhengyang Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期305-317,共13页
Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect no... Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future. 展开更多
关键词 Malus domestica Borkh high temperature stress PEEL BROWNING MdPPO1
下载PDF
Potassium alleviated high nitrogen-induced apple growth inhibition by regulating photosynthetic nitrogen allocation and enhancing nitrogen utilization capacity
3
作者 Xinxiang Xu Guangyuan Liu +10 位作者 Jingquan Liu Mengxue Lyu Fen Wang Yue Xing Hao Meng Min Li Yu Jiang Ge Tian Zhanling Zhu Yuanmao Jiang Shunfeng Ge 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期1-14,共14页
There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular c... There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular changes in M9T337 apple(Malus domestica)rootstocks under different nitrate(10 and 30 mmol·L^(-1)NO_(3)^(-))and K supply(0.5,6,10,and 20 mmol·L_(-1)K^(+))conditions.Results revealed that high nitrate inhibited the root growth of M9T337 rootstocks,downregulated the expressions of K transporter genes(MdPT5,MdHKT1,and MdATK1),and reduced the net NO3-and K+influx at the surface of roots,thereby resulting in an N/K imbalance in rootstocks.Further investigation showed that 10 mmol·L^(-1)K increased the activity of N metabolic enzymes(NR,GS,NiR,and GOGAT),upregulated the expressions of genes related to nitrate uptake and transport(MdNRT1.1,MdNRT1.2,MdNRT1.5,and MdNRT2.4),promoted15N transport from the roots to the shoots,optimized leaf N distribution,and improved photosynthetic N utilization efficiency under high nitrate conditions.These results suggest that the negative effects of high nitrate may be related to the N/K imbalance and that reducing N/K in plants by increasing K supply level can effectively alleviate the inhibition of N assimilation by high nitrate stress. 展开更多
关键词 Apple rootstock K level high nitrate stress N metabolism ^(15)N
下载PDF
Metabolomics of astaxanthin hyperaccumulation in Haematococcus pluvialis under high light stress
4
作者 Yong DOU Jiayi LI Wenli ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1876-1886,共11页
Variation in metabolite profiles of Haematococcus pluvialis(a type of unicellular green algal)under light stress is a key issue of study at the present.To investigate the effect of light intensity on accumulation of a... Variation in metabolite profiles of Haematococcus pluvialis(a type of unicellular green algal)under light stress is a key issue of study at the present.To investigate the effect of light intensity on accumulation of astaxanthin in H.pluvialis,a 26-day batch culture experiment of H.pluvialis under the light intensity levels at 73,127,182,236,and 291μmol/(m^(2)·s)was conducted.Therefore,the optimal light intensity and the corresponding metabolic pathways of accumulation in H.pluvialis were determined.Results show that 236μmol/(m^(2)·s)was the optimum light intensity to induce astaxanthin accumulation,at which a maximum content of 9.01 mg/L was achieved on Day 24.A total of 132 metabolites were identified and quantified,of which 38 differential metabolites were highlighted and classified,including 3 fatty acids or intermediates,5 amino acids or derivatives,5 carbohydrates or intermediates,16nucleoside derivatives,and 9 other metabolites using LC-MS/MS technique.Subsequently,16 statistically significant differential metabolic pathways were enriched and annotated based on Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis between the control and the 236μmol/(m^(2)·s)treatment group(P<0.05).In addition,the bioprocesses included cellular basal metabolism and signaling systems,such as carbohydrate metabolism,amino acid metabolism,glycerol and derivatives metabolism,nucleotide and derivative metabolism,and inositol phosphate metabolism were activated and regulated under strong light stress conditions.Moreover,4 hub metabolites containing D-glucose-6-phosphate,L-tyrosine,glycerol-3-phosphate,and L-glutamine were identified,based on which the associated metabolic network was constructed.The study provided a metabolomic view of astaxanthin accumulation in H.pluvialis under strong light stress. 展开更多
关键词 Haematococcus pluvialis ASTAXANTHIN high light stress metabolomic analysis
下载PDF
Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage
5
作者 JI Dongling XIAO Wenhui +8 位作者 SUN Zhiwei LIU Lijun GU Junfei ZHANG Hao Matthew Tom HARRISON LIU Ke WANG Zhiqin WANG Weilu YANG Jianchang 《Rice science》 SCIE CSCD 2023年第6期598-612,共15页
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for... Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future. 展开更多
关键词 rice early panicle initiation stage high temperature stress carbon-nitrogen translocation grain yield grain quality
下载PDF
Triaxial creep damage characteristics of sandstone under high crustal stress and its constitutive model for engineering application
6
作者 Dongxu Chen Laigui Wang +1 位作者 Pierre Darry Versaillot Chuang Sun 《Deep Underground Science and Engineering》 2023年第3期262-273,共12页
The creep characteristics of rock under high crustal stress are of important influence on the long‐term stability of deep rock engineering.To study the creep characteristics and engineering application of sandstone u... The creep characteristics of rock under high crustal stress are of important influence on the long‐term stability of deep rock engineering.To study the creep characteristics and engineering application of sandstone under high crustal stress,this study constructed nonlinear creep damage(NCD)constitutive mode based on the triaxial graded loading‒unloading creep test of sandstone in the Yuezhishan Tunnel.A numerical NCD constitutive model and a breakable lining(BL)model were developed based on FLAC3D and then applied to the stability analysis of the Yuezhishan Tunnel.Based on the creep test results of sandstone,a power function of creep rate and stress level was constructed,by which the long‐term strength was solved.The results show that the long‐term strength of the red sandstone based on the related function of the steady‐state creep rate and stress level is close to the measured stress value in engineering.The NCD model considering damage factors reflects the instantaneous and viscoelastic plasticity deformation characteristics of the red sandstone.The numerical NCD constitutive model and the BL model can reflect surrounding rock deformation characteristics and lining failure characteristics in practical engineering.The research results provide theoretical references for long‐term stability analysis of rock engineering and the deformation control of surrounding rock under high crustal stress. 展开更多
关键词 creep damage model high stress long‐term strength secondary development tunnel engineering
下载PDF
Study on Asymmetric Deformation Law and Surrounding Rock Control Technology of High Stress Soft Rock Crossing Roadway
7
作者 Linhao Zhang 《World Journal of Engineering and Technology》 2023年第2期353-369,共17页
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C... In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions. 展开更多
关键词 Deep high Stress Soft Rock Penetration Asymmetric Deformation Support FLAC3D
下载PDF
Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain 被引量:20
8
作者 TAO Zhi-qiang SUI Peng +5 位作者 CHEN Yuan-quan LI Chao NIE Zi-jin YUAN Shu-fen SHI Jiang-tao GAO Wang-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2179-2188,共10页
High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were intr... High temperature stress(HTS) on spring maize(Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain(NCP).Subsoiling(SS) and ridge tillage(R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage.The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County,Hebei Province,China.Compared with rotary tillage(RT),the net photosynthetic rate,stomatal conductance,transpiration rate,and chlorophyll relative content(SPAD) of maize leaves was increased by 40.0,42.6,12.8,and 29.7% under SS,and increased by 20.4,20.0,5.4,and 14.2% under R,repectively.However,the treatments reduce the intercellular CO 2 concentration under HTS.The SS and R treatments increased the relative water content(RWC) by 11.9 and 6.2%,and the water use efficiency(WUE) by 24.3 and 14.3%,respectively,compared with RT.The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile,whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment.Compared with 2011,the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012,whereas the plant yield decreased by 2.5,8.5 and 10.9%,the net photosynthetic rate reduced by 7.5,10.5 and 18.0%,the RWC reduced by 3.9,5.6 and 6.2%,and the WUE at leaf level reduced by 1.8,5.2 and 13.1% in the SS,R and RT treatments,respectively.Both the root length density and the soil moisture also decreased at different levels.The yield,photosynthetic rate,plant water status,root length density,and soil moisture under the SS and R treatments declined less than that under the RT treatment.The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage,and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status,photosynthesis and grain filling.The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP. 展开更多
关键词 high temperature stress spring maize filling stage SUBSOILING ridge tillage
下载PDF
Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages 被引量:19
9
作者 L Guo-hua WU Yong-feng +3 位作者 BAI Wen-bo MA Bao WANG Chun-yan SONG Ji-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期603-609,共7页
Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to dec... Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain- filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34% from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk. 展开更多
关键词 dry matter partitioning grain yield high temperature stress rice growth
下载PDF
Support technology of deep roadway under high stress and its application 被引量:8
10
作者 Cao Rihong Cao Ping Lin Hang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期787-793,共7页
Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stab... Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value. 展开更多
关键词 Deep roadway Floor heave high stress SUPPORT Steel beam
下载PDF
A critical review on the developments of rock support systems in high stress ground conditions 被引量:8
11
作者 Masoud Ghorbani Korosh Shahriar +1 位作者 Mostafa Sharifzadeh Reza Masoudi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期555-572,共18页
Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of su... Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice. 展开更多
关键词 high in-situ stress ROCKBURST SQUEEZING SWELLING Energy-absorbing rockbolts Yielding supports
下载PDF
Physical modeling and visualization of soil liquefaction under high confining stress 被引量:5
12
作者 Lenart González Tarek Abdoun +2 位作者 Mourad Zeghal Vivian Kallou Michael K. Sharp 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期47-57,共11页
The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood. Evaluation of these mechanisms is generallybased on extrapolation of observed behavior ... The mechanisms of seismically-induced liquefaction of granular soils underhigh confining stresses are still not fully understood. Evaluation of these mechanisms is generallybased on extrapolation of observed behavior at shallow depths. Three centrifuge model tests wereconducted at RPI's experimental facility to investigate the effects of confining stresses on thedynamic response of a deep horizontal deposit of saturated sand. Liquefaction was observed at highconfining stresses in each of the tests. A system identification procedure was used to estimate theassociated shear strain and stress time histories. These histories revealed a response marked byshear strength degradation and dilative patterns. The recorded accelerations and pore pressures wereemployed to generate visual animations of the models. These visualizations revealed a liquefactionfront traveling downward and leading to large shear strains and isolation of upper soil layers. 展开更多
关键词 centrifuge modeling high confining stress LIQUEFACTION SYSTEMIDENTIFICATION VISUALIZATION
下载PDF
Quantitative Trait Loci Associated with Pollen Fertility under High Temperature Stress at Flowering Stage in Rice (Oryza sativa) 被引量:6
13
作者 Ying-hui XIAO Yi PAN +4 位作者 Li-hua LUO Hua-bing DENG Gui-lian ZHANG Wen-bang TANG Li-yun CHEN 《Rice science》 SCIE 2011年第3期204-209,共6页
关键词 RICE quantitative trait locus pollen fertility high temperature stress
下载PDF
Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6 被引量:5
14
作者 Fu Guan-fu TAO Long-xing SONG Jian WANG Xi CAO Li-yong CHENG Shi-hua 《Rice science》 SCIE 2008年第3期215-222,共8页
By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control) were used to analyze ... By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control) were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P〈0.05) respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage. 展开更多
关键词 hybrid rice high temperature stress high temperature injury spikelet fertility seed setting
下载PDF
The NAC-like transcription factor Si NAC110 in foxtail millet(Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway 被引量:5
15
作者 XIE Li-na CHEN Ming +7 位作者 MIN Dong-hong FENG Lu XU Zhao-shi ZHOU Yong-bin XU Dong-bei LI Lian-cheng MA You-zhi ZHANG Xiao-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期559-571,共13页
Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of ... Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants. 展开更多
关键词 foxtail millet (Setaria italica (L.) NAC-like transcription factor drought stress high salt stress ABA-independent pathway
下载PDF
The Effect of High Temperature after Anthesis on Rice Quality and Starch Granule Structure of Endosperm 被引量:6
16
作者 Zhang Guilian Liao Bin +1 位作者 Li Bo Cai Zhihuan 《Meteorological and Environmental Research》 CAS 2016年第3期72-75,共4页
To ascertain the effect mechanism of high temperature after anthesis on rice quality, the experiment was conducted with two rice lines, the heat-tolerant line 996 and heat-sensitive line 4628, with high temperature an... To ascertain the effect mechanism of high temperature after anthesis on rice quality, the experiment was conducted with two rice lines, the heat-tolerant line 996 and heat-sensitive line 4628, with high temperature and optimal temperature in the growth chamber to investigate the effect of high temperature stress after anthesis on rice appearance quality, milling quality, cooking and eating quality and starch granule structure of endo- sperm. The result showed that milled rice rate, head rice rate, amylose content and gel consistency of both lines decreased under high temperature stress after anthesis, while the ratio of grain length to width, chalky rate, chalkiness, protein content increased. Under high temperature treatments, gelatinization temperature, final viscosity, set back and peak time increased, breakdown decreased, Mg content and K content increased, Mg/K ra- tio decreased. Under same treatment, the extent of rice quality of heat tolerant line 996 affected by high temperature was lower than that of heat sensitive line 4628. Under high temperature stress after anthesis, starch granule arranged untightly, most of starch granules existed in the form of a single starch endosperm, refractive index decreased, transparency reduced, and led to the formation of chalk. Under high temperature stress af- ter anthesis, the increase of protein content, the decrease of Mg/K, the changes of rice RVA profile characteristics and starch granule structure of endosperm could be the main reason for the decrease of rice cooking and eating quality and appearance quality. 展开更多
关键词 high temperature stress after anthesis Rice quality ENDOSPERM Starch granule structure China
下载PDF
Respiratory Response of Dormant Nectarine Vegetative Buds to High Temperature Stress 被引量:2
17
作者 TAN Yue LI Ling +3 位作者 LENG Chuan-yuan LI Dong-mei CHEN Xiu-de GAO Dong-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期80-86,共7页
High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetat... High temperature stress (HT) is efficient in breaking endo-dormancy of perennial trees. The effects of HT (50°C) on the respiration of dormant nectarine (Prunus persica var. nectariana cv. Shuguang) vegetative buds were evaluated in the research. We found that bud respiration was transiently inhibited by HT and the pentose phosphate pathway (PPP) and the cytochrome C pathway (CYT) were significantly affected. On the substrate level, PPP was activated in the HT-treated buds compared with the control group. However, the activation did mot occur until hours after HT treatment. The tricarboxylic acid cycle (TCA) in both the HT-treated buds and in the control group proceeded at a low level most of the time compared with total respiration. On the electron transfer level, CYT was transiently inhibited by HT but became significantly active in the later stage. CYT operation in the control group exhibited an attenuation process. The alternative pathway (ALT) fluctuated both in the HT-treated samples and in the control. The results suggest that the temporary CYT inhibition and the following PPP activation may be involved in HT-induced bud dormancy release and budburst mechanisms. 展开更多
关键词 high temperature stress dormancy release RESPIRATION NECTARINE vegetative buds
下载PDF
Rock damage and fracturing induced by high static stress and slightly dynamic disturbance with acoustic emission and digital image correlation techniques 被引量:2
18
作者 Shuting Miao Peng-Zhi Pan +2 位作者 Petr Konicek Peiyang Yu Kunlun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1002-1019,共18页
A series of coupled static-dynamic loading tests is carried out in this study to understand the effect of slightly dynamic disturbance on the rocks under high static stress.The acoustic emission(AE)and digital image c... A series of coupled static-dynamic loading tests is carried out in this study to understand the effect of slightly dynamic disturbance on the rocks under high static stress.The acoustic emission(AE)and digital image correlation(DIC)techniques are combined to quantitatively characterize the damage and fracturing behaviors of rocks.The effects of three influencing factors,i.e.initial static stress,disturbance amplitude,and disturbance frequency,on the damage and fracturing evolution are analyzed.The experimental results reveal the great differences in AE characteristics and fracturing behaviors of rocks under static loads and coupled static-dynamic loads.Both the Kaiser effect and Felicity effect are observed during the disturbance loading process.The crack initiation,stable and unstable propagation in the highly-stressed rocks can be triggered by cyclic disturbance loads,and more local tensile splitting cracks are found in the rocks subjected to coupled static-dynamic loads.The damage and fracturing evolution of rocks during cyclic disturbances can be divided into two stages,i.e.steady and accelerated stages,and the increase rate and proportion of each stage are greatly affected by these influencing factors.High initial static stress,low disturbance frequency,and high disturbance amplitude are considered to be adverse factors to the stability of the rocks,which would induce a high increase rate of the steady stage and a high proportion of the accelerated stage within the whole disturbance period.Based on the two-stage damage evolution trend,a linear-exponential damage model is employed to predict the instability of the rocks under coupled static-dynamic loads. 展开更多
关键词 Damage evolution Fracture behaviors high static stress Dynamic disturbance Damage model
下载PDF
Effects of Calcium and Calmodulin Antagonist on Antioxidant Systems of Eggplant Seedlings Under High Temperature Stress 被引量:2
19
作者 CHENGui-lin JIAKai-zhi HANLi-hua RENLiang-yu 《Agricultural Sciences in China》 CAS CSCD 2004年第2期101-107,共7页
Ca2+ and calmodulin antagonist [trifluoperazine(TFP),N-(6-aminohexyl-chloro-1-naphthalenesulfonamide (W7)] pretreatments were conducted on two eggplant varieties Nongyouqie andErmingqie, which have different heat resi... Ca2+ and calmodulin antagonist [trifluoperazine(TFP),N-(6-aminohexyl-chloro-1-naphthalenesulfonamide (W7)] pretreatments were conducted on two eggplant varieties Nongyouqie andErmingqie, which have different heat resistance. The results showed that under 40C(day/night), Ca2+ immersion pretreatment enabled the eggplant seedlings to keep relatively higheractivities of superoxide dismutase(SOD) and peroxidase(POD), reduced the production rate ofsuperoxide anion O2_ and the content of malondialdehyde(MDA), alleviated the damage of reducedglutathione(GSH) and the accumulation of proline (Pro), whereas calmodulin antagonist TFP andW7 immersion pretreatments could lead to more rapid loss of SOD and POD activities, increasethe contents of MDA, Pro and production rate of O2_, aggravate the damage of GSH. Under the samestress condition, heat-resistant variety Nongyouqie was less injured compared to the heat-sensitive variety Erminqie. These data indicated that Ca2+-CaM signal transduction systemmight regulate the heat resistance of eggplant seedlings by controlling the activity of someantioxidant enzymes and the contents of antioxidant substance. 展开更多
关键词 EGGPLANT CA2+ W7 and TFP high temperature stress Antioxidatant systems
下载PDF
Differential Expression of miRNAs in Rice under High Temperature Stress 被引量:2
20
作者 Guangmin XU Xiaofang YANG +2 位作者 Rong ZHANG Qiao LI Juan LI 《Agricultural Biotechnology》 CAS 2015年第4期6-9,15,共5页
The growth and development of rice are closely related with temperature. In order to clarify the mechanism of high temperature resistance in riee, in this study, using high temperature-resistant Indian rice cultivar N... The growth and development of rice are closely related with temperature. In order to clarify the mechanism of high temperature resistance in riee, in this study, using high temperature-resistant Indian rice cultivar N22 as the experimental material, Osa-rniR159c, Osa-miR159d, Osa-miR159f, Osa-miR164d, Osa- rrdR529b and Osa-miR166h-3p obtained by high-throughput sequencing as target genes, the expression patterns of these genes in young panicles of rice under high temperature stress were analyzed by RNA-tailing and primer-extension RT-PCR, which provided theoretical basis for breeding high temperature-resistant rice eultivars. 展开更多
关键词 RICE high temperature stress MIRNAS QRT-PCR Differential expression
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部