In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxi...This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.展开更多
Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, s...Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.展开更多
The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been c...The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.展开更多
To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this st...To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this structure,the permeability of the composite increases by 3 times(from 7.5 to 21.5)at 100 MHz compared with to the spherical carbonyl iron SMC,and the permeability changes little at frequencies below 100 MHz.In addition,the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz.The total core losses of the composites at 10,20,and 30 m T are80.0,355.3,and 810.7 m W/cm^(3),respectively,at 500 k Hz.Compared with the spherical carbonyl iron SMC,the core loss at500 k Hz is reduced by more than 60%.Therefore,this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
This paper proposes the design and development of a novel, portable and low-cost intelligent electronic device (IED) for real-time monitoring of high frequency phenomena in CENELEC PLC band. A high speed floating-poin...This paper proposes the design and development of a novel, portable and low-cost intelligent electronic device (IED) for real-time monitoring of high frequency phenomena in CENELEC PLC band. A high speed floating-point digital signal processor (DSP) along with 4 MSPS analog-to-digital converter (ADC) is used to develop the intelligent electronic device. An optimized algorithm to process the analog signal in real-time and to extract the meaningful result using signal processing techniques has been implemented on the device. A laboratory environment has setup with all the necessary equipment including the development of the load model to evaluate the performance of the IED. Smart meter and concentrator is also connected to the low voltage (LV) network to monitor the PLC communication using the IED. The device has been tested in the laboratory and it has produced very promising results for time domain as well as frequency domain analysis. Those results imply that the IED is fully capable of monitoring high frequency disturbances in CENELEC PLC band.展开更多
This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level...This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level up to converter level.展开更多
High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release schem...High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.展开更多
针对变流器不同位置杂散电感准确获取困难的问题,提出一种基于LC高频振荡原理的杂散电感多参数提取方法,充分利用变流器自身结构,通过3个现场实验主动构建不同的谐振电路,并根据它们的振荡频率计算变流器不同位置的杂散电感。首先阐述...针对变流器不同位置杂散电感准确获取困难的问题,提出一种基于LC高频振荡原理的杂散电感多参数提取方法,充分利用变流器自身结构,通过3个现场实验主动构建不同的谐振电路,并根据它们的振荡频率计算变流器不同位置的杂散电感。首先阐述了高频振荡法的基本原理,建立了不同谐振实验的等值电路模型。然后,以1700 V/450 A IGBT变流器系统为例,通过仿真与实验进行了可行性与有效性验证。最后,通过实验与传统双脉冲法进行了对比分析。研究表明:所提出的方法可有效提取变流器内不同位置的杂散电感参数,与双脉冲法提取开关杂散电感结果基本一致,精度可达纳亨级。展开更多
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
文摘This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.
文摘Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.
文摘The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574122 and 51731001)Joint Fund of Equipment Pre-Research and Ministry of Education,China(Grant No.6141A02033242)。
文摘To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this structure,the permeability of the composite increases by 3 times(from 7.5 to 21.5)at 100 MHz compared with to the spherical carbonyl iron SMC,and the permeability changes little at frequencies below 100 MHz.In addition,the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz.The total core losses of the composites at 10,20,and 30 m T are80.0,355.3,and 810.7 m W/cm^(3),respectively,at 500 k Hz.Compared with the spherical carbonyl iron SMC,the core loss at500 k Hz is reduced by more than 60%.Therefore,this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘This paper proposes the design and development of a novel, portable and low-cost intelligent electronic device (IED) for real-time monitoring of high frequency phenomena in CENELEC PLC band. A high speed floating-point digital signal processor (DSP) along with 4 MSPS analog-to-digital converter (ADC) is used to develop the intelligent electronic device. An optimized algorithm to process the analog signal in real-time and to extract the meaningful result using signal processing techniques has been implemented on the device. A laboratory environment has setup with all the necessary equipment including the development of the load model to evaluate the performance of the IED. Smart meter and concentrator is also connected to the low voltage (LV) network to monitor the PLC communication using the IED. The device has been tested in the laboratory and it has produced very promising results for time domain as well as frequency domain analysis. Those results imply that the IED is fully capable of monitoring high frequency disturbances in CENELEC PLC band.
基金supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877the Current Industry Partnership Program
文摘This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level up to converter level.
文摘High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.
文摘针对变流器不同位置杂散电感准确获取困难的问题,提出一种基于LC高频振荡原理的杂散电感多参数提取方法,充分利用变流器自身结构,通过3个现场实验主动构建不同的谐振电路,并根据它们的振荡频率计算变流器不同位置的杂散电感。首先阐述了高频振荡法的基本原理,建立了不同谐振实验的等值电路模型。然后,以1700 V/450 A IGBT变流器系统为例,通过仿真与实验进行了可行性与有效性验证。最后,通过实验与传统双脉冲法进行了对比分析。研究表明:所提出的方法可有效提取变流器内不同位置的杂散电感参数,与双脉冲法提取开关杂散电感结果基本一致,精度可达纳亨级。