Na2Ti3O7 has attracted much attention in the field of anode materials for Na-ion batteries thanks to its non-toxicity and very low working potential of 0.3 V vs Na0/Na+.Building a clearer picture of its formation from...Na2Ti3O7 has attracted much attention in the field of anode materials for Na-ion batteries thanks to its non-toxicity and very low working potential of 0.3 V vs Na0/Na+.Building a clearer picture of its formation from cheap Na_(2)CO_(3) and TiO_(2) starting materials is therefore of obvious interest.Here,we report new insights from an in-situ high temperature X-ray diffraction study conducted from room temperature to 800°C,complemented by ex-situ characterizations.We were thereby able to position the previously reported Na_(4)Ti_(5)O_(12) and Na_(2)Ti_(6)O_(13) intermediate phases in a reaction scheme involving three successive steps and temperature ranges.Shifts and/or broadening of a subset of the Na_(2)Ti_(6)O_(13) reflections suggested a combination of intra-layer disorder with the well-established ordering of successive layers.This in-situ study was carried out on reproducible mixtures of Na_(2)CO_(3) and TiO_(2) in 1:3 molar ratio prepared by spraydrying of mixed aqueous suspensions.Single-phase Na_(2)Ti_(3)O_(7) was obtained after only 8 h at 800°C in air,instead of a minimum of 20 h for a conventional solid-state route using the same precursors.Microstructure analysis revealed~15 mm diameter granules made up from rectangular rods of a fewmm length presenting electrochemical properties in line with expectations.In the absence of grinding or formation of intimate composites with conductive carbon,the specific capacity of 137 m Ah/g at C/5 decreased at higher rates.展开更多
An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis ...An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis oriented crystal structure with preferred (002) orientation. The Phi-sca~ XRD pattern confirms that the epitaxiM ZnO exhibits a single- domain wurtzite structure with hexagonal symmetry. In situ high-temperature XRD studies of ZnO thin film show that the crystallite size increases with increasing temperature, and (002) peaks shift systematically toward lower 20 values due to the change of lattice parameters. The lattice parameters show linear increase in their values with increasing temperature.展开更多
Cordierite ceramics were prepared by using talc, bauxite and kaolin clay as starting materials. According to the detected resuh of XRD step-scanning from 25° to 35° by a high temperature X-ray diffractometer...Cordierite ceramics were prepared by using talc, bauxite and kaolin clay as starting materials. According to the detected resuh of XRD step-scanning from 25° to 35° by a high temperature X-ray diffractometer, 20 and d values of five peaks of cordierite crystal were ascer- rained. Then the least squares technique was used to cal- culate the crystal parameters : at 25 ℃ , a = b = O. 981 8 nm, c =0. 927 4 nm, V=O. 774 3 nm3 ; at 600 ℃ , a =b =O. 982 0 nm, c=0.9252 nm, V=O. 773 5 nm3. The crystal volumetric coefficient of thermal expansion (CTE) and linear CTE along a and c axes were calcu- lated, αv = 2. 33 × 10-6℃-1, αa = αb, = 3. 27 × 10-6℃ -1 , αc = -4.19 ×10-6℃ -1. The average CTE of cordierite crystal is as low as O. 78 × 10-6℃ -1展开更多
Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposi...Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposition rate for fabricating medium-and large-sized parts such as die-casting tools.In this study,AISI H13 tool steel,a popular die-casting tool metal,is manufactured by cold metal transfer(CMT)-based WAAM and is then comprehensively analyzed for its microstructural and mechanical properties.Location-dependent phase combinations are observed,which could be explained by nonequilibrium thermal cycles that resulted from the layer-by-layer stacking mechanism used in WAAM.In addition,remelting and reheating of the layers reduces welding anomalies(e.g.,pores and voids).The metallurgical characteristics of the H13 strongly correlate with the mechanical properties.The combinations of phases at different locations of the additively manufactured part exhibit a periodic microhardness profile.Martensite,Retained Austenite,Ferrite,and Carbide phases are found in combination at different locations of the part based on the part’s temperature distribution during additive deposition.Moreover,the tensile properties at elevated temperatures(23℃,300℃,and 600℃)are comparable to those from other WAAM and additive manufacturing(AM)processes.The X-ray diffraction results verify that the microstructural stability of the fabricated parts at high temperatures would allow them to be used in high temperatures.展开更多
Heteropoly acids(HPA) are well known for their versatile solid acid catalysis in diverse chemical reactions, however they suffer from low surface area(<10 m^2/g) and leaching into the reactions media, which reduce ...Heteropoly acids(HPA) are well known for their versatile solid acid catalysis in diverse chemical reactions, however they suffer from low surface area(<10 m^2/g) and leaching into the reactions media, which reduce their prospects as industrial catalyst.Herein, a novel hybrid material HPW@Zr-BTC,composed of 12-tungstophoric acid(HPW) and Zr^(Ⅳ)-benzene tri-carboxylate(Zr-BTC) metal-organic framework(MOF), was prepared via one-pot solvothermal method. Excellent HPW loading up to 32.3 wt% was achieved, and HPW@Zr-BTC composite proved to be highly stable, besides the crystalline morphology of Zr-BTC was intact. The catalytic activity of the hybrid composite was explored via Friedel-Crafts acylation of anisole with benzoyl chloride.The 28.2 wt% HPW@Zr-BTC showed excellent catalytic performance, with 99.4% anisole conversion and 97.6% yield(pmethoxybenzophenone) under solvent free conditions. Excellent retention of catalytic activity was achieved after at least five consecutive runs due to non-observable HPW leaching. The promising activity and stability of the catalyst forecasted its potential industrial applications.展开更多
基金supported by the Walloon Region under the “PE PlanMarshall2.vert”program(BATWAL–1318146)。
文摘Na2Ti3O7 has attracted much attention in the field of anode materials for Na-ion batteries thanks to its non-toxicity and very low working potential of 0.3 V vs Na0/Na+.Building a clearer picture of its formation from cheap Na_(2)CO_(3) and TiO_(2) starting materials is therefore of obvious interest.Here,we report new insights from an in-situ high temperature X-ray diffraction study conducted from room temperature to 800°C,complemented by ex-situ characterizations.We were thereby able to position the previously reported Na_(4)Ti_(5)O_(12) and Na_(2)Ti_(6)O_(13) intermediate phases in a reaction scheme involving three successive steps and temperature ranges.Shifts and/or broadening of a subset of the Na_(2)Ti_(6)O_(13) reflections suggested a combination of intra-layer disorder with the well-established ordering of successive layers.This in-situ study was carried out on reproducible mixtures of Na_(2)CO_(3) and TiO_(2) in 1:3 molar ratio prepared by spraydrying of mixed aqueous suspensions.Single-phase Na_(2)Ti_(3)O_(7) was obtained after only 8 h at 800°C in air,instead of a minimum of 20 h for a conventional solid-state route using the same precursors.Microstructure analysis revealed~15 mm diameter granules made up from rectangular rods of a fewmm length presenting electrochemical properties in line with expectations.In the absence of grinding or formation of intimate composites with conductive carbon,the specific capacity of 137 m Ah/g at C/5 decreased at higher rates.
基金Project supported by the National Natural Science Foundation of China (Grant No.10490192)
文摘An epitaxial ZnO thin film was entirely fabricated by pulsed laser deposition. Both the orientation and the size of the crystallites were studied. The X-ray diffraction (XRD) patterns of the film show strong c-axis oriented crystal structure with preferred (002) orientation. The Phi-sca~ XRD pattern confirms that the epitaxiM ZnO exhibits a single- domain wurtzite structure with hexagonal symmetry. In situ high-temperature XRD studies of ZnO thin film show that the crystallite size increases with increasing temperature, and (002) peaks shift systematically toward lower 20 values due to the change of lattice parameters. The lattice parameters show linear increase in their values with increasing temperature.
基金financially supported by the National Natural Science Foundation of China (Grants No.51372229)the National Five-year Support Project(Grants No.2013BAE03B01)Zhengzhou Innovation Team(Grants No.131PCXTD602)
文摘Cordierite ceramics were prepared by using talc, bauxite and kaolin clay as starting materials. According to the detected resuh of XRD step-scanning from 25° to 35° by a high temperature X-ray diffractometer, 20 and d values of five peaks of cordierite crystal were ascer- rained. Then the least squares technique was used to cal- culate the crystal parameters : at 25 ℃ , a = b = O. 981 8 nm, c =0. 927 4 nm, V=O. 774 3 nm3 ; at 600 ℃ , a =b =O. 982 0 nm, c=0.9252 nm, V=O. 773 5 nm3. The crystal volumetric coefficient of thermal expansion (CTE) and linear CTE along a and c axes were calcu- lated, αv = 2. 33 × 10-6℃-1, αa = αb, = 3. 27 × 10-6℃ -1 , αc = -4.19 ×10-6℃ -1. The average CTE of cordierite crystal is as low as O. 78 × 10-6℃ -1
基金support of the Korea Institute of Industrial Technology as a project on the development of metal 3D printing materials and process optimization technology for medium-and large-sized transportation part mold manufacturing(KITECH JE200008)。
文摘Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposition rate for fabricating medium-and large-sized parts such as die-casting tools.In this study,AISI H13 tool steel,a popular die-casting tool metal,is manufactured by cold metal transfer(CMT)-based WAAM and is then comprehensively analyzed for its microstructural and mechanical properties.Location-dependent phase combinations are observed,which could be explained by nonequilibrium thermal cycles that resulted from the layer-by-layer stacking mechanism used in WAAM.In addition,remelting and reheating of the layers reduces welding anomalies(e.g.,pores and voids).The metallurgical characteristics of the H13 strongly correlate with the mechanical properties.The combinations of phases at different locations of the additively manufactured part exhibit a periodic microhardness profile.Martensite,Retained Austenite,Ferrite,and Carbide phases are found in combination at different locations of the part based on the part’s temperature distribution during additive deposition.Moreover,the tensile properties at elevated temperatures(23℃,300℃,and 600℃)are comparable to those from other WAAM and additive manufacturing(AM)processes.The X-ray diffraction results verify that the microstructural stability of the fabricated parts at high temperatures would allow them to be used in high temperatures.
基金supported by the National Key Research and Development Program of China(2016YFB0601303)the National Natural Science Foundation of China(51374193,21676278)+1 种基金Key Program of National Natural Science Foundation of China(9143420)Chinese Academy of Sciences,State Administration of Foreign Experts Affairs(CAS/SAFEA)International Partnership Program for Creative Research Teams(20140491518)
文摘Heteropoly acids(HPA) are well known for their versatile solid acid catalysis in diverse chemical reactions, however they suffer from low surface area(<10 m^2/g) and leaching into the reactions media, which reduce their prospects as industrial catalyst.Herein, a novel hybrid material HPW@Zr-BTC,composed of 12-tungstophoric acid(HPW) and Zr^(Ⅳ)-benzene tri-carboxylate(Zr-BTC) metal-organic framework(MOF), was prepared via one-pot solvothermal method. Excellent HPW loading up to 32.3 wt% was achieved, and HPW@Zr-BTC composite proved to be highly stable, besides the crystalline morphology of Zr-BTC was intact. The catalytic activity of the hybrid composite was explored via Friedel-Crafts acylation of anisole with benzoyl chloride.The 28.2 wt% HPW@Zr-BTC showed excellent catalytic performance, with 99.4% anisole conversion and 97.6% yield(pmethoxybenzophenone) under solvent free conditions. Excellent retention of catalytic activity was achieved after at least five consecutive runs due to non-observable HPW leaching. The promising activity and stability of the catalyst forecasted its potential industrial applications.