期刊文献+
共找到3,496篇文章
< 1 2 175 >
每页显示 20 50 100
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
1
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion Biodegradable magnesium alloy high temperature oxidation Corrosion resistance WE43.
下载PDF
A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications 被引量:1
2
作者 Yixing Wan Yanhai Cheng +5 位作者 Yongxiong Chen Zhibin Zhang Yanan Liu Haijun Gong Baolong Shen Xiubing Liang 《Engineering》 SCIE EI CAS CSCD 2023年第11期110-120,共11页
Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the micr... Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications. 展开更多
关键词 Refractory high-entropy alloy high temperature Mechanical property MICROSTRUCTURE Strengthening mechanism
下载PDF
High temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy with ultra-fine grains 被引量:9
3
作者 曲凤盛 刘旭光 +1 位作者 邢飞 张凯锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2379-2388,共10页
For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results... For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results show that tensile direction has great effect on elongation of the laser butt-welded plate. Under conditions of transverse direction tension, the maximum elongation reaches 458.56% at 950 °C with strain rate of 3.1-10-4 s-1, in which the strain rate sensitivity value m is 0.352 and the welding seam is not deformed. Under conditions of longitudinal direction tension, the maximum elongation is 178.96% at 965 °C with strain rate of 6.2-10-4 s-1, in which m-value is 0.261, and the welding seam contributes to the deformation with the matrix. The microstructure in as-welded fusion zone is constituted of austenite dendrites and Laves phase precipitated in interdendrites. After longitudinal direction tension, a mixed microstructure with dendrite and equiaxed crystal appears in the welding seam due to dynamic recrystallization. After high temperature deforming, many δ-phase grains are transformed from Laves phase grains but a small part of residual Laves phase grains still exist in the welding seam. The deformation result of multi-sheet cylinder sandwich structure verifies that high temperature plasticity of the laser butt-welded plate can meet the requirement of superplastic forming. 展开更多
关键词 Inconel 718 alloy laser welding high temperature plasticity microstructure
下载PDF
Fretting wear and friction oxidation behavior of 0Cr20Ni32AlTi alloy at high temperature 被引量:6
4
作者 张晓宇 任平弟 +2 位作者 钟发春 朱旻昊 周仲荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期825-830,共6页
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ... The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated. 展开更多
关键词 high temperature nickel chrome-iron alloy fretting wear friction oxidation activation energy
下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4
5
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
下载PDF
Microstructure and high temperature oxidation resistance of Si-Y co-deposition coatings prepared on TiAl alloy by pack cementation process 被引量:6
6
作者 李涌泉 谢发勤 吴向清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期803-810,共8页
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc... In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy. 展开更多
关键词 TiAl alloy Si-Y co-deposition coating MICROSTRUCTURE high temperature oxidation resistance pack cementation process
下载PDF
Effects of high temperature pre-straining on natural aging and bake hardening response of Al-Mg-Si alloys 被引量:3
7
作者 贾志宏 丁立鹏 +2 位作者 翁瑶瑶 文章 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期924-929,共6页
The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) anal... The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterization. The results show that pre-straining at 170 °C immediately after quenching can effectively resolve the rather high T4 temper hardness caused by the conventional room temperature (RT) pre-straining treatment, and give a better bake hardening response (BHR) after paint-bake cycle. HT-PS 7% at 170 °C for 10 min is chosen as the optimum process as it provides lower T4 temper hardness and better BHR. The simultaneous introduction of dislocations and Cluster (2) can significantly suppress the natural aging and promote the precipitation of β″ phase, and reduce the effects of deformation hardening by dynamic recovery. 展开更多
关键词 Al-Mg-Si alloy high temperature pre-straining natural aging bake hardening response
下载PDF
High temperature oxidation behavior of directionally solidified NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho eutectic alloy 被引量:1
8
作者 王振生 谢亿 +4 位作者 郭建亭 周兰章 胡壮麒 张光业 陈志钢 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1582-1587,共6页
The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ... The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C. 展开更多
关键词 intermetallic compounds NIAL high temperature oxidation directional eutectic alloy
下载PDF
Tribological behaviour of AZ71E alloy at high temperatures 被引量:1
9
作者 黄伟九 林强 刘成龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2057-2065,共9页
Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results... Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance. 展开更多
关键词 magnesium alloy dry sliding wear high temperature wear wear mechanism
下载PDF
Fretting Wear Characteristics of Nuclear Fuel Cladding in High-Temperature Pressurized Water 被引量:3
10
作者 Jun Wang Haojie Li +4 位作者 Zhengyang Li Yujie Lei Quanyao Ren Yongjun Jiao Zhenbing Cai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期326-338,共13页
In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was develope... In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment.It can simulate the fretting wear experiment of PWR under different temperatures(maximum temperature is 350℃),displacement amplitude,vibration frequency,and normal force.The fretting wear behavior of Zr-4 alloy under different temperature environments was tested.In addition,the evolution of wear scar morphology,profile,and wear volume was studied using an optical microscope(OM),scanning electron microscopy(SEM),and a 3D white light interferometer.Results show that higher water temperature evidently decreased the cladding wear volume,the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth. 展开更多
关键词 Fretting wear CLADDING high temperature and high pressure Zirconium alloy
下载PDF
High temperature mechanical behavior of alumina dispersion strengthened copper alloy with high content of alumina 被引量:6
11
作者 向紫琪 李周 +2 位作者 雷前 肖柱 庞咏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期444-450,共7页
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum... The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion. 展开更多
关键词 copper alloys alumina dispersion strengthened alloy high temperature mechanical behavior creep behavior FRACTURE strengthening mechanism
下载PDF
Phase-Transitions at High, Very High, and Very Low Temperatures upon Nano-Indentations: Onset Forces and Transition Energies
12
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2023年第6期101-120,共20页
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la... This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it. 展开更多
关键词 Aluminum alloy Aviation Cosmology Epochal News high and Liquid Nitrogen temperature Indentations Negative-Energy-Content Polymorph Molybdenum Phase-Transition-Energy
下载PDF
Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys 被引量:24
13
作者 Yuan-kui CAO Yong LIU +3 位作者 Bin LIU Wei-dong ZHANG Jia-wen WANG Meng DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1476-1483,共8页
Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behav... Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance. 展开更多
关键词 high entropy alloy refractory metal high temperature oxidation oxide scale MICROSTRUCTURE
下载PDF
High-temperature tribological properties of Ni-P alloy coatings deposited by electro-brush plating 被引量:6
14
作者 LI Zhiming QIAN Shiqiang +2 位作者 WANG Wei SHEN Hongwei LONG Hesun 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期669-675,共7页
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us... High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed. 展开更多
关键词 sliding wear high temperature electro-brush plating Ni-P alloy coating surface analysis
下载PDF
Friction of Alloys at High Temperature 被引量:11
15
作者 M.B.Peterson (Wear Sciences, 925 Mallard Circle, Arnold Maryland 21012, USA)(To whom correspondence should be addressed)S.J.Calabrese (Rensselaer Polytechnic Institute, Troy, NY, USA)Shizhuo LI and Xiaoxia JIANG (Institute of Metal Research, Chinese Acad 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第5期313-320,共8页
A brief review is given about the friction and wear properties of high temperature alloys. Above a critical temperature, if the oxide becomes ductile, it will flow over the surface and prevent metal-to-metat contact. ... A brief review is given about the friction and wear properties of high temperature alloys. Above a critical temperature, if the oxide becomes ductile, it will flow over the surface and prevent metal-to-metat contact. In order to study the tribology of oxide lubrication. a series of tests were carried out using Cu(ReO4)2 as a lubricant. The effects of time. Surface finish. substrates. load and temperature were investigated. A mechanism of lubrication is proposed in which the surface slip predominates along with mechanical attachment of oxide to the surface. 展开更多
关键词 RE Cu Friction of alloys at high temperature ADA NI
下载PDF
Effect of carbon on high temperature compressive and creep properties of β-stabilized TiA l alloy 被引量:6
16
作者 Can-xu ZHOU Bin LIU +3 位作者 Yong LIU Cong-zhang QIU Hui-zhong LI Yue-hui HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2400-2405,共6页
Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2... Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2Mo(molar fraction,%)alloy were studied through compressive and creep tests.The results show that the carbon addition(0.5%,molar fraction)obviously enhances the high temperature compressive strength and creep resistance of theβ-stabilized Ti?45Al?3Fe?2Mo alloy.A lot of nano-scaled Ti3AlC carbides precipitate in theβ-stabilized alloy and these carbides pin the dislocations,and greatly increase the high temperature properties.At the same time,the carbon addition decreases the amount of?phase,refines the lamellar spacing,and causes solution strengthening,which also contribute to the improvement of the high temperature properties. 展开更多
关键词 TiAl alloy CARBON precipitation high temperature compression high temperature creep
下载PDF
CONTROLLING HIGHTEMPERATURE DEFORMATION BY VARYING MICROSTRUCTURE IN A Ti47Al2Cr2Nb ALLOY 被引量:5
17
作者 T.G.Nieh and J.Wadsworth Lawrence Livermore National Laboratory, L-369, P.O.Box 808, Livermore, CA 94550, U.S.A. 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期254-262,共9页
A Ti 47Al 2Cr 2Nb alloy was made by powder extrusion methods. By varying extrusion temperature, different microstructures were produced. At an extrusion temperature of 1 400 ℃ (above α transus), a uniform, fully lam... A Ti 47Al 2Cr 2Nb alloy was made by powder extrusion methods. By varying extrusion temperature, different microstructures were produced. At an extrusion temperature of 1 400 ℃ (above α transus), a uniform, fully lamellar structure was observed. In contrast, when powders were extruded at 1 150 ℃, an inhomogeneous microstructure consisting of γ,α 2 and metastable β phases was obtained. It was demonstrated that, while alloy extruded at 1 400 ℃ exhibited an excellent creep resistance, alloy with the same composition extruded at 1 150 ℃ exhibited superplasticity. The good creep resistance was resulted from the presence of fine lamellae which restrict dislocation slip within γ grains. These fine lamellae also promote the nucleation of deformation twins which impede dislocation glide along the interfaces ( γ/γ and γ/α 2) and, thus, reduces creep rate. In the case of low temperature extrusion, an elongation value of over 300% was obtained at a strain rate of 2×10 -5 s -1 and at a temperature as low as 800 ℃, which is close to the ductile to brittle transition temperature. This is in contrast to the prior major observations of superplastic behaviors in TiAl in which typical temperatures of 1 000 ℃ have usually been required for superplasticity. It was proposed that the occurrence of superplasticity at 800 ℃ is caused by the presence of a B2 phase which, during superplastic deformation (grain boundary sliding), accommodates sliding strains to reduce the propensity for cavitation at grain triple junctions and, thus, delays the fracture process. 展开更多
关键词 TI 47Al 2Cr 2Nb alloy MICROSTRUCTURES high temperature DEFORMATION
下载PDF
ISOCHRONOUS STRESS-STRAIN CURVES OF LOW ALLOY STEEL CROSS-WELD-SPECIMEN AT HIGH TEMPERATURE 被引量:4
18
作者 C.W.Ma F.Z.Xuan +1 位作者 Z.D.Wang S.T.Tu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期612-617,共6页
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ... In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal. 展开更多
关键词 isochronous stress-strain curve creep deformation high temperature welded joint low alloy steel
下载PDF
DEVELOPMENT OF MoS_2-CONTAINING Ni-Cr BASED ALLOYS AND THEIR HIGH-TEMPERATURE TRIBOLOGICAL PROPERTIES 被引量:5
19
作者 Xiong DangshengCollege of Mechanical Electronic Engineering, China University of Mining and Technology, Xuzhou 221008, P. R. ChinaPeng Chaoqun and Huang QizhongState Key Lab for Powder Metallurgy, Central South University of Technology, Changs 《中国有色金属学会会刊:英文版》 CSCD 1998年第2期51-54,共4页
DEVELOPMENTOFMoS2CONTAININGNiCrBASEDALLOYSANDTHEIRHIGHTEMPERATURETRIBOLOGICALPROPERTIES①XiongDangshengCol... DEVELOPMENTOFMoS2CONTAININGNiCrBASEDALLOYSANDTHEIRHIGHTEMPERATURETRIBOLOGICALPROPERTIES①XiongDangshengColegeofMechanicalEl... 展开更多
关键词 NiCr BASED alloy selflubricating TRIBOLOGICAL properties hightemperature
下载PDF
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:9
20
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson Pressure Bar Dynamic compressive property Failure behavior high strain rates high temperature
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部