期刊文献+
共找到5,999篇文章
< 1 2 250 >
每页显示 20 50 100
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
1
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions 被引量:2
2
作者 Jiankun Qin Xueyu Pang +2 位作者 Ashok Santra Guodong Cheng Hailong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期191-203,共13页
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour... In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases. 展开更多
关键词 high pressure and high temperature(HPHT) Strength retrogression Young’s modulus Water permeability Rietveld method
下载PDF
High-pressure and high-temperature sintering of pure cubic silicon carbide:A study on stress-strain and densification
3
作者 刘金鑫 彭放 +5 位作者 马国龙 梁文嘉 何瑞琦 管诗雪 唐越 向晓君 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期498-505,共8页
Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grai... Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles. 展开更多
关键词 high pressure and high temperature silicon carbide stress analysis DEFECT
下载PDF
A Comprehensive Method for the Optimization of Cement Slurry and to Avoid Air Channeling in High Temperature and High-Pressure Conditions
4
作者 Yanjun Li Wandong Zhang +3 位作者 Jiang Wu Yuhao Yang Chao Zhang Huanqiang Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1237-1248,共12页
Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and press... Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and pressures.Prevention of this problem requires,in general,excellent anti-channeling performances of the cement sheath.Three methods to predict such anti-channeling performances are proposed here,which use the weightless pressure of cement slurry,the permeability of cement stone and the volume expansion rate of cement sheath as input parameters.Guided by this approach,the anti-channeling performances of the cement slurry are evaluated by means of indoor experiments,and the cement slurry is optimized accordingly.The results show that the dangerous transition time of the cement slurry with optimized dosage of admixture is only 76 min,the permeability of cement stone is 0.005 md,the volume shrinkage at final setting is only 0.72%,and the anti-channeling performances are therefore maximized.The effective utilization of the optimized cement slurry in some representative wells(LD10–1-A1 and LD10–1-A2 in LD10–1 gas field)is also discussed. 展开更多
关键词 high temperature and high pressure cement slurry anti-channeling weightlessness pressure PERMEABILITY volume shrinkage
下载PDF
Mechanical Analysis of a Multi-Test String in High-Temperature and High-Pressure Deep Wells
5
作者 Zubing Tang 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2161-2170,共10页
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le... The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan). 展开更多
关键词 Test string high temperature and high pressure BUCKLING subdividing operation process mechanical model
下载PDF
Experimental Study on the Electrical Conductivity of Orthopyroxene at High Temperature and High Pressure under Different Oxygen Fugacities 被引量:4
6
作者 DAI Lidong LI Heping +3 位作者 LIU Congqiang SHAN Shuangming CUI Tongdi SU Genli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期803-809,共7页
At presure 1.0-4.0 GPa and temperature 1073-1423 K and under oxygen partial pressure conditions, a YJ-3000t multi-anvil solid high-pressure apparatus and Sarltron-1260 Impedance/Gain-Phase analyzer were employed to co... At presure 1.0-4.0 GPa and temperature 1073-1423 K and under oxygen partial pressure conditions, a YJ-3000t multi-anvil solid high-pressure apparatus and Sarltron-1260 Impedance/Gain-Phase analyzer were employed to conduct an in-situ measurement of the electrical conductivity of orthopyroxene. The buffering reagents consist of Ni+NiO, Fe+Fe3O4, Fe+FeO and Mo+MoO2 in order to control the environmental oxygen fugacity. Experimental results made clear that: (1) within the measuring frequency range from 10-1 to 106 Hz, the complex impedance (R) is of intensive dependence on the frequency; (2) The electrical conductivity (a) tends to increase along to the rise of temperature (T), and Log a vs. 1/ T fit the Arrenhius linear relations; (3) Under the control of oxygen buffer Fe+Fe3O4, with the rise of pressure, the activation enthalpy tends to increase whereas the electrical conductivity tends to decrease. The activation energy and activation volume of the main current carders of orthopyroxene have been obtained, which are (1.715±0.035) eV and (0.03±0.01) cm^3/mol, respectively; (4) Under given pressure and temperature, the electrical conductivity tends to increase with increasing oxygen fugacity, while under given pressure the activation enthalpy tends to decrease with increasing oxygen fugacity; and (5) The sample's small polarons mechanism has provided a reasonable explanations to the conduction behavior at high temperature and high pressure. 展开更多
关键词 ORTHOPYROXENE high temperature and high pressure electrical conductivity oxygen fugacity small polaron
下载PDF
Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and High Pressure 被引量:6
7
作者 杨卫国 王金福 金涌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期253-257,共5页
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring... The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors. 展开更多
关键词 gas-liquid mass transfer high temperature high pressure slurry bubble column
下载PDF
Prospect of HDR geothermal energy exploitation in Yangbajing,Tibet,China,and experimental investigation of granite under high temperature and high pressure 被引量:2
8
作者 Yangsheng Zhao Zijun Feng +3 位作者 Baoping Xi Jinchang Zhao Zhijun Wan Anchao Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期260-269,共10页
Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other... Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other countries or regions. In this paper, the geological characters of Yangbajing basin were first analyzed, including the continental dynamic environments to form HDR geothermal fields in Tibet, the tectonic characteristics of south slope of Nyainqentanglha and Dangxiong-Yangbajing basin, and the in-situ stresses based on the investigations conducted, and then the site-specific mining scheme of HDR geothermal resources was proposed. For the potential development of HDR geothermal energy, a series of experiments were conducted on large-scale granite samples, 200 mm in diameter and 400 mm in length, at high temperature and high triaxial pressure for cutting fragmentation and borehole stability. For the borehole stability test, a hole of 40 mm in diameter and 400 mm in length was aforehand drilled in the prepared intact granite sample. The results indicate that the cutting velocity obviously increases with temperature when bit pressure is over a certain value, while the unit rock-breaking energy consumption decreases and the rock-breaking efficiency increases with temperature at the triaxial pressure of 100 MPa. The critical temperature and pressure that can result in intensive damage to granite are 400-500℃ and 100-125 MPa, respectively. 展开更多
关键词 hot dry rock (HDR) geothermal energy exploitation high temperature and high pressure cutting fragmentation borehole stability
下载PDF
Experimental Study on Water-rock Reactions with CO2 Fluid in a Deep Sandstone Formation under High Temperature and Pressure 被引量:1
9
作者 LI Chengze CHEN Guojun +5 位作者 LI Chao TIAN Bing SUN Rui SU Long LU Yingxin WANG Lijuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期268-279,共12页
Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high p... Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope(SEM)observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope(SEM)was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150℃to 300℃and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150℃and 45 MPa,in contrast to conditions of200℃and 50 MPa for albite and calcite.Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2,furthermore,the dissolution effect and strength of the sandstone components were also affected.The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration. 展开更多
关键词 deep reservoir high temperature and pressure CO2-rich fluid DISSOLUTION Qiongdongnan Basin
下载PDF
A Study of High-Temperature and High-Pressure Experiment of Correlativity between Deformational System of Au-Bearing Rocks and Element Adjustment 被引量:2
10
作者 DONG Faxian LI Zhongjian +1 位作者 CHEN Bailin WANG Jianping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期40-46,共7页
Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the co... Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis. 展开更多
关键词 Au-bearing rocks element adjustments high-temperature and high-pressure experiment tectono-petrogenesis tectono-metallogenesis
下载PDF
An experimental study of interaction between pure water and alkaline feldspar at high temperatures and pressures 被引量:1
11
作者 Tao Li Heping Li Liping Xu 《Acta Geochimica》 EI CAS CSCD 2018年第1期60-67,共8页
Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and ... Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500℃, 8-50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows:(1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point.(2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid. 展开更多
关键词 Alkaline feldspar AUTOCLAVE high-temperature and high-pressure experiments
下载PDF
Conceptual design and safety characteristics of a new multi-mission high flux research reactor 被引量:3
12
作者 Wei Xu Jian Li +4 位作者 Heng Xie Zhi-Hong Liu Jing Zhao Fei Xie Lei Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期9-24,共16页
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ... Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits. 展开更多
关键词 high flux research reactor Neutron flux Safety analysis Maximum temperature of cladding surface Departure from nucleate boiling ratio
下载PDF
The experimental studies on electrical con-ductivities and P-wave velocities of anortho-site at high pressure and high temperature
13
作者 白利平 杜建国 +1 位作者 刘巍 周文戈 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第6期667-676,共10页
Results of P-wave velocity (vP) and electrical conductivity measurements on anorthosite are presented from room temperature to 880 C at 1.0 GPa using ultrasonic transmission technique and impedance spectra technique r... Results of P-wave velocity (vP) and electrical conductivity measurements on anorthosite are presented from room temperature to 880 C at 1.0 GPa using ultrasonic transmission technique and impedance spectra technique respec-tively. The experiments show that the P-wave velocities in anorthosite decrease markedly above 680 C following the dehydration of hydrous minerals in the rock, and the complex impedances collected from 12 Hz to 105 Hz only indicate the grain interior conduction mechanism at 1.0 GPa, from 410 C to 750 C. Because the fluids in the rock have not formed an interconnected network, the dehydration will not pronouncedly enhance the electrical conduc-tivity and change the electrical conduction mechanism. It is concluded that the formation and evolution of the low-velocity zones and high-conductivity layers in the crust may have no correlations, and the dehydration can result in the formation of the low-velocity zones, but cannot simultaneously result in the high-conductivity layers. 展开更多
关键词 ANORTHOSITE P-wave velocity electrical conductivity high pressure and high temperature
下载PDF
The Research Status and Major Problems of High Temperature and High Pressure Experiment on Petrogenesis and mineralization
14
作者 ZHANG Yan HAN Runsheng +1 位作者 WEI Pingtang ZHOU Gaoming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期296-297,共2页
1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of ... 1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of traditional mineralogy,petrology,geochemistry and geophysics.It is not only an important and essential way and window to understand geological processes in depth and geological 展开更多
关键词 In ZHANG The Research Status and Major Problems of high temperature and high pressure experiment on Petrogenesis and mineralization high
下载PDF
Experimental study on liquid immiscibility of lamprophyre-sulfide melt at high temperature and high pressure and its geological significance
15
作者 LI Bo HUANG Zhilong ZHU Chengming 《Chinese Journal Of Geochemistry》 EI CAS 2009年第2期198-203,共6页
With lamprophyre and pyrite from the Laowangzhai gold deposit, Yunnan Province, China, as starting materials, and at pressures from 1.5 to 3.0 GPa and temperatures from 1160 to 1560℃ , an experimental study was carri... With lamprophyre and pyrite from the Laowangzhai gold deposit, Yunnan Province, China, as starting materials, and at pressures from 1.5 to 3.0 GPa and temperatures from 1160 to 1560℃ , an experimental study was carried out on the liquid immiscibility of lamprophyre-sulfide melt at high temperature and ultra-high pressure in the DS-29A cubic 3600T/6-type high pressure apparatus. Results showed that the liquid immiscibility of lampro-pyre-sulfide melt in the magmatic system would happen during the early magmatic evolution (high temperature and high pressure conditions) and was controlled by temperature and pressure. The sulfide melt which was separated from the lamprophyric melt would make directional movement in the temperature and pressure field and assemble in the low-temperature and low-pressure region. Because the density of SM is higher than that of the lamprophyric melt, the former would gather together at the bottom of the magma chamber and there would exist a striking boundary between the two melts. On the other hand, the results also suggested that there would be little possibility for lampro-phyric magma to carry massive gold, and lamprophyres can't provide many of oreforming materials (Au) in the processes of gold mineralization. 展开更多
关键词 液态不混溶 高温高压 硫化物 煌斑岩 地质意义 熔体 液体 试验
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:9
16
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 high-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
A new and reliable model for predicting methane viscosity at high pressures and high temperatures 被引量:6
17
作者 Ehsan Heidaryan Jamshid Moghadasi Amir Salarabadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期552-556,共5页
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ... In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794. 展开更多
关键词 METHANE VISCOSITY falling body viscometer high pressures high temperatures CORRELATION
下载PDF
Pressure Prediction for High-Temperature and High-Pressure Formation and Its Application to Drilling in the Northern South China Sea 被引量:4
18
作者 WANGZhenfeng XIEXinong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期640-643,共4页
There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressu... There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressure greatly blocked hydrocarbon exploration. The conventional means of drills, including methods in the prediction and monitoring of underground strata pressure, can no longer meet the requirements in this area. The China National Offshore Oil Corporation has allocated one well with a designed depth of 3200 m and pressure coefficient of 2.3 in the Yinggehai Basin (called test well in the paper) in order to find gas reservoirs in middle-deep section in the Miocene Huangliu and Meishan formations at the depth below 3000 m. Therefore, combined with the '863' national high-tech project, the authors analyzed the distribution of overpressure in the Yinggehai and Qiongdongnan basins, and set up a series of key technologies and methods to predict and monitor formation pressure, and then apply the results to pressure prediction of the test well. Because of the exact pressure prediction before and during drilling, associated procedure design of casing and their allocation in test well has been ensured to be more rational. This well is successfully drilled to the depth of 3485 m (nearly 300 m deeper than the designed depth) under the formation pressure about 2.3 SG (EMW), which indicate that a new step in the technology of drilling in higher temperature and pressure has been reached in the China National Offshore Oil Corporation. 展开更多
关键词 formation pressure high temperature OVERpressure pressure prediction Yinggehai Basin South China Sea
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
19
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 OIL-BASED DRILLING FLUIDS high temperature high pressure RHEOLOGICAL property MATHEMATICAL model
下载PDF
The Shandong Shidao Bay 200 MW_e High-Temperature Gas-Cooled Reactor Pebble-Bed Module(HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation 被引量:20
20
作者 张作义 董玉杰 +10 位作者 李富 张征明 王海涛 黄晓津 李红 刘兵 吴莘馨 王宏 刁兴中 张海泉 王金华 《Engineering》 SCIE EI 2016年第1期119-123,共5页
In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what... In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Con- gress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a "hydrogen" economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors. 展开更多
关键词 high temperature gas reactor Next-Generation Nuclear Plant (NGNP) LICENSING Nuclear Regulatory CommissionEnergy Policy Act of 2005Research status
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部