The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le...The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).展开更多
Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the densi...Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.展开更多
Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
Diamond crystal crystallized in Fe–Mg–C system with Archimedes buoyancy as a driving force is established under high pressure and high temperature conditions. The experimental results indicate that the addition of t...Diamond crystal crystallized in Fe–Mg–C system with Archimedes buoyancy as a driving force is established under high pressure and high temperature conditions. The experimental results indicate that the addition of the Mg element results in the nitrogen concentration increasing from 87 ppm to 271 ppm in the diamond structure. The occurrence of the {100}plane reveals that the surface character is remarkably changed due to the addition of Mg. Micro-Raman spectra indicate that the half width of full maximum is in a range of 3.01 cm^-1–3.26 cm^-1, implying an extremely good quality of diamond specimens in crystallization.展开更多
A PHE (Process Heat Exchanger) is a key component in transferring high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for the massive production of hydrogen. Last year, a...A PHE (Process Heat Exchanger) is a key component in transferring high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for the massive production of hydrogen. Last year, a 10 kW class lab-scale PHE prototype made of Hastelloy-X was manufactured at the Korea Atomic Energy Research Institute (KAERI), and a performance test of the PHE prototype is currently underway in a small-scale nitrogen gas loop at KAERI. The PHE prototype is composed of two kinds of flow plates: grooves 1.0 mm in diameter machined into the flow plate for the primary coolant, and waved channels bent into the flow plate for the secondary coolant. Inside the 10 kW class lab-scale PHE prototype, twenty flow plates for the primary and secondary coolants are stacked in turn. In this study, to understand the macroscopic structural behavior of the PHE prototype under the steady-state operating condition of the gas loop, high-temperature structural analyses on the 10 kW class lab-scale PHE prototype were performed for two extreme cases: in the event of contacting the flow plates together, and when not contacting them. The analysis results for the extreme cases were also compared.展开更多
Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum tem...Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.展开更多
An eight year national program aiming at the development of high temperature intermetallics was started by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST MITI...An eight year national program aiming at the development of high temperature intermetallics was started by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST MITI) in 1989 and almost successfully ended in 1997. This national program with emphasis on basic aspects of the properties and processing of high temperature intermetallics, Ti Al and Nb Al, have given a considerable impetus to intermetallics research in Japan. This is an overview of the results of the program and implications of the program for the future development of high temperature intermetallics compounds for structural applications. Alloy design, evaluation of fundamental mechanical properties, fabrication processing and surface modification have been investigated using these two alloy systems. Based on the obtained results, the concept of alloy design was established, and new technologies, were developed for metal injection moding, casting, rheocasting, sheet casting and rolling, superplastic forming, heat treatment, melting and investment casting, gas atomization, direct rolling of alloyed powders, near net shaping by HIPing alloyed powders and oxidation resistant surface coating. Some of suggested intermetallics alloys are expected to be basics for ultra high temperature structural materials in the next generation because of the extremely high strengths at high temperature, 1 100 ℃ and 1 800 ℃, beyond conventional Ni base superalloys.展开更多
The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the ab...The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the absence of well-defined quasi-particles. Here, we show that the mentioned “quasi-particles” are solitons, which are formed as a result of self-organization of ionized matter. Shortcomings of the Boltzmann physical kinetics consist in the local description of the transport processes on the level of infinitely small physical volumes as elements of diagnostics. The non-local physics leads to the theory superconductivity including the high temperature diapason. The generalized non-local non-stationary London’s formula is derived.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance o...High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance of HSV,and affect the response speed and reliability of ADHS.Increasing the driving voltage is an effective method for improving the dynamic performance of HSV.However,continuous high voltage excitation will lead to more wasted energy,higher temperature rising and lower reliability.To solve this problem,a pre-excitation control algorithm(PECA)is proposed in this paper based on the theoretical model of the influence of electrical parameters on dynamic performance and temperature rising characteristics.In PECA,an appropriate initial coil current is generated by pre-excitation instead of increasing driving voltage,which significantly shortens the switching delay time.Then,based on real-time current online calculation and feedback mechanism,the adaptive switching of five equivalent voltages is realized.Consequently,the coil current can be rapidly kept at the expected state without consuming more energy and generating more heat.Results indicate that compared with conventional PWM control algorithm,the PECA can improve dynamic performance of HSV,shorten the total switching time by 71.5%,and increase the maximum operation frequency.Therefore,the linear area of flow characteristic is expended by 80.0%,the adjusting time of HSV-controlled system is reduced by 23%,while shortening steady error by 46.7%.Moreover,the temperature rising characteristics of HSV are better,the maximum operation temperature is reduced by 68.6%,and the time to reach the steady state temperature is shortened by 20%.From the results,it can be concluded that the PECA is not only an effective and practical control algorithm for improving the performance of HSVs and HSV-controlled systems while reducing the heat generation and decreasing the temperature rising of HSV,but also can be a potential solution in ADHS.展开更多
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
文摘The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).
基金Project(2013CB036003)supported by the National Key Basic Research Program of ChinaProjects(51374198,51134001)supported by the National Natural Science Foundation of ChinaProject(CXZZ13_0935)supported by the Jiangsu Province Ordinary College Graduate Research Innovative Program,China
文摘Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2013MS0809)the Open Project of Key Laboratory of Functional Materials Physics and Chemistry(Jilin Normal University)of the Ministry of Education of China(Grant No.201608)
文摘Diamond crystal crystallized in Fe–Mg–C system with Archimedes buoyancy as a driving force is established under high pressure and high temperature conditions. The experimental results indicate that the addition of the Mg element results in the nitrogen concentration increasing from 87 ppm to 271 ppm in the diamond structure. The occurrence of the {100}plane reveals that the surface character is remarkably changed due to the addition of Mg. Micro-Raman spectra indicate that the half width of full maximum is in a range of 3.01 cm^-1–3.26 cm^-1, implying an extremely good quality of diamond specimens in crystallization.
文摘A PHE (Process Heat Exchanger) is a key component in transferring high-temperature heat generated from a VHTR (Very High Temperature Reactor) to a chemical reaction for the massive production of hydrogen. Last year, a 10 kW class lab-scale PHE prototype made of Hastelloy-X was manufactured at the Korea Atomic Energy Research Institute (KAERI), and a performance test of the PHE prototype is currently underway in a small-scale nitrogen gas loop at KAERI. The PHE prototype is composed of two kinds of flow plates: grooves 1.0 mm in diameter machined into the flow plate for the primary coolant, and waved channels bent into the flow plate for the secondary coolant. Inside the 10 kW class lab-scale PHE prototype, twenty flow plates for the primary and secondary coolants are stacked in turn. In this study, to understand the macroscopic structural behavior of the PHE prototype under the steady-state operating condition of the gas loop, high-temperature structural analyses on the 10 kW class lab-scale PHE prototype were performed for two extreme cases: in the event of contacting the flow plates together, and when not contacting them. The analysis results for the extreme cases were also compared.
基金Funded by R&D Special Fund for Public Welfare Industry(meteorology),No.GYHY(QX)2007-6-19Na-tional Scientific and Technical Supporting Programs,No.2006BAK13B05
文摘Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.
文摘An eight year national program aiming at the development of high temperature intermetallics was started by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST MITI) in 1989 and almost successfully ended in 1997. This national program with emphasis on basic aspects of the properties and processing of high temperature intermetallics, Ti Al and Nb Al, have given a considerable impetus to intermetallics research in Japan. This is an overview of the results of the program and implications of the program for the future development of high temperature intermetallics compounds for structural applications. Alloy design, evaluation of fundamental mechanical properties, fabrication processing and surface modification have been investigated using these two alloy systems. Based on the obtained results, the concept of alloy design was established, and new technologies, were developed for metal injection moding, casting, rheocasting, sheet casting and rolling, superplastic forming, heat treatment, melting and investment casting, gas atomization, direct rolling of alloyed powders, near net shaping by HIPing alloyed powders and oxidation resistant surface coating. Some of suggested intermetallics alloys are expected to be basics for ultra high temperature structural materials in the next generation because of the extremely high strengths at high temperature, 1 100 ℃ and 1 800 ℃, beyond conventional Ni base superalloys.
文摘The Boltzmann local physical kinetics forecasts the destruction of SC regime because of the heat movement of particles. Then, the most fundamental distinction between a strange metal and a conventional metal is the absence of well-defined quasi-particles. Here, we show that the mentioned “quasi-particles” are solitons, which are formed as a result of self-organization of ionized matter. Shortcomings of the Boltzmann physical kinetics consist in the local description of the transport processes on the level of infinitely small physical volumes as elements of diagnostics. The non-local physics leads to the theory superconductivity including the high temperature diapason. The generalized non-local non-stationary London’s formula is derived.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金the National Natural Science Foundation of China(No.52005441)Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001)+3 种基金Natural Science Foundation of Zhejiang Province(No.LQ21E050017)“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Nos.2022C01122 and 2022C01132)Postdoctoral Science Foundation(Nos.2021M692777 and 2021T140594)State Key Laboratory of Mechanical System and Vibration(No.MSV202316).
文摘High speed on/off valve(HSV)is an essential component in aerospace digital hydraulic systems(ADHS).Dynamic performance and temperature rising characteristic are two important features,which determine the performance of HSV,and affect the response speed and reliability of ADHS.Increasing the driving voltage is an effective method for improving the dynamic performance of HSV.However,continuous high voltage excitation will lead to more wasted energy,higher temperature rising and lower reliability.To solve this problem,a pre-excitation control algorithm(PECA)is proposed in this paper based on the theoretical model of the influence of electrical parameters on dynamic performance and temperature rising characteristics.In PECA,an appropriate initial coil current is generated by pre-excitation instead of increasing driving voltage,which significantly shortens the switching delay time.Then,based on real-time current online calculation and feedback mechanism,the adaptive switching of five equivalent voltages is realized.Consequently,the coil current can be rapidly kept at the expected state without consuming more energy and generating more heat.Results indicate that compared with conventional PWM control algorithm,the PECA can improve dynamic performance of HSV,shorten the total switching time by 71.5%,and increase the maximum operation frequency.Therefore,the linear area of flow characteristic is expended by 80.0%,the adjusting time of HSV-controlled system is reduced by 23%,while shortening steady error by 46.7%.Moreover,the temperature rising characteristics of HSV are better,the maximum operation temperature is reduced by 68.6%,and the time to reach the steady state temperature is shortened by 20%.From the results,it can be concluded that the PECA is not only an effective and practical control algorithm for improving the performance of HSVs and HSV-controlled systems while reducing the heat generation and decreasing the temperature rising of HSV,but also can be a potential solution in ADHS.