Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most ...Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most nickel-based superalloys. In order to add more Cr into Ni-based alloy for improving high temperature oxidation and corrosion resistance, the poor hot workability of high-Cr alloy must be first solved. Deformation characteristic of a high-Cr nickel-based alloy (40 wt% Cr) under hot compression conditions at 800-1200 ℃ has been investigated by using a Gleeble 3500 machine, and the microstructural evolution during hot working process has been observed by optical microscopy and scanning electron microscopy. The results show that a high-temperature low-plasticity (HTLP) region exists in this high-Cr nickel-based alloy. This phenomenon can be attributed to its non-uniform interdendritic microstructure at high temperatures. These results can explain the poor hot workability of high-Cr nickel-based alloy.展开更多
基金support from the National Natural Science Foundation of China, No.50771011
文摘Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most nickel-based superalloys. In order to add more Cr into Ni-based alloy for improving high temperature oxidation and corrosion resistance, the poor hot workability of high-Cr alloy must be first solved. Deformation characteristic of a high-Cr nickel-based alloy (40 wt% Cr) under hot compression conditions at 800-1200 ℃ has been investigated by using a Gleeble 3500 machine, and the microstructural evolution during hot working process has been observed by optical microscopy and scanning electron microscopy. The results show that a high-temperature low-plasticity (HTLP) region exists in this high-Cr nickel-based alloy. This phenomenon can be attributed to its non-uniform interdendritic microstructure at high temperatures. These results can explain the poor hot workability of high-Cr nickel-based alloy.