Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given...Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given. The equations are based on the error function solution to the diffusion equation and do not take into account variations of the diffusivity with composition. Also, when the substrate of the coating is multiphase, the equations do not take into account the precipitate morphology, but do take into account that precipitates can act as sinks or sources of solute as the average composition of the substrate varies. The equations are meant to be alloy design tools that indicate how changing substrate or coating chemistry will reduce the extent of interdiffusion.展开更多
Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of t...Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.展开更多
文摘Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given. The equations are based on the error function solution to the diffusion equation and do not take into account variations of the diffusivity with composition. Also, when the substrate of the coating is multiphase, the equations do not take into account the precipitate morphology, but do take into account that precipitates can act as sinks or sources of solute as the average composition of the substrate varies. The equations are meant to be alloy design tools that indicate how changing substrate or coating chemistry will reduce the extent of interdiffusion.
基金financial support from the National Natural Science Foundation of China(11672153,11232008,and11227801)
文摘Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.