The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc...The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.展开更多
Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious fo...Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious form, stress-strain curve, peak strength, peak strain and elastic modulus with temperature were analyzed and the essence of rock failure modes was explored. The results indicate that, compared with granite after the high temperature treatment, the brittle-ductile transition critical temperature is lower, the densification stage is longer, the elastic modulus is smaller and the damage is larger under high temperature. In addition, the peak stress is lower and the peak strain is greater, but both of them change more obviously with the increase of temperature compared with that of granite after the high temperature treatment. Furthermore, the failure modes of granite after the high temperature treatment and under high temperature show a remarkable difference. Below 100 ℃, the failure modes of granite under both conditions are the same, presenting splitting failure. However, after 100 ℃, the failure modes of granite after the high temperature treatment and under high temperature present splitting failure and shear failure, respectively.展开更多
A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating...A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating were obtained. The results indicated that the oxidation resistance of the alloy K17 was evidently improved with NiCrAlY coatings at 900∼1100°C. As oxidation temperature rising, the interdiffusion between the coatings and substrates was enhanced. Ti atoms diffused from the substrate to the surface of coating to form the oxide, which was one of the reasons for the decrement of oxidation resistance. The oxidation resistance of NiCrAlY coating was decreased due to the spalling of pieces of oxide.展开更多
The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging fr...The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.展开更多
The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a revers...The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.展开更多
In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fi...In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS) replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects, exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Conse- quently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.展开更多
In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied ...In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.展开更多
The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ...The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.展开更多
文摘The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.
基金Projects(51304241,11472311,51322403)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016zzts456)supported by Independent Exploration and Innovation Foundation of Central South University,ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious form, stress-strain curve, peak strength, peak strain and elastic modulus with temperature were analyzed and the essence of rock failure modes was explored. The results indicate that, compared with granite after the high temperature treatment, the brittle-ductile transition critical temperature is lower, the densification stage is longer, the elastic modulus is smaller and the damage is larger under high temperature. In addition, the peak stress is lower and the peak strain is greater, but both of them change more obviously with the increase of temperature compared with that of granite after the high temperature treatment. Furthermore, the failure modes of granite after the high temperature treatment and under high temperature show a remarkable difference. Below 100 ℃, the failure modes of granite under both conditions are the same, presenting splitting failure. However, after 100 ℃, the failure modes of granite after the high temperature treatment and under high temperature present splitting failure and shear failure, respectively.
文摘A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating were obtained. The results indicated that the oxidation resistance of the alloy K17 was evidently improved with NiCrAlY coatings at 900∼1100°C. As oxidation temperature rising, the interdiffusion between the coatings and substrates was enhanced. Ti atoms diffused from the substrate to the surface of coating to form the oxide, which was one of the reasons for the decrement of oxidation resistance. The oxidation resistance of NiCrAlY coating was decreased due to the spalling of pieces of oxide.
基金Projects 50490273 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China+1 种基金08KJD130003 by the Basic Research Program of University in Jiangsu ProvinceXKY2007219 by Xuzhou Institute of Technology
文摘The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51071059 and 51271065) and the National Basic Research Program of China (Grant Nt). 2012CB619400)
文摘The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.
文摘In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS) replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects, exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Conse- quently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.
文摘In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.
文摘The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.