期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characteristics of High Temperature Rupture of a Cast Ni-Based Superalloy M963 被引量:7
1
作者 Chao YUAN , Xaofeng SUN,Fengshi YIN,Hengrong GUAN,Zhuangqi HU, Qi ZHENG and Yang YU Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第4期425-428,共4页
The rupture behavior of a cast Ni-base superalloy M963 at high temperature has been investi- gated. The microstructure examination shows that there exists a large amount of the carbide and γ-γ' eutectic, which i... The rupture behavior of a cast Ni-base superalloy M963 at high temperature has been investi- gated. The microstructure examination shows that there exists a large amount of the carbide and γ-γ' eutectic, which is very harmful to the mechanical properties of M963 superalloy. The tensile strength of M963 superalloy both at room temperature and at high temperatures is higher than that of K17G alloy, but the tensile ductility of the former is much lower than that of the latter. In tensile fracture process with the high strain rate, the open carbides are the initiation site and the carbide/matrix interface is the propagation path of cracks. But in fracture process with the low strain rate, the carbide/matrix interface and cast microvoids are the initiation sites, and the carbide/matrix interface is the propagation path of cracks. The effective ways to improve ductility of M963 superalloy are also suggested. 展开更多
关键词 Characteristics of high temperature Rupture of a Cast Ni-Based superalloy M963 CAST high Ni
下载PDF
Effects of alloying element on stabilities, electronic structures, and mechanical properties of Pd-based superalloys
2
作者 闫佩 种晓宇 +1 位作者 蒋业华 冯晶 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期420-426,共7页
The thermodynamic stabilities, electronic structures, and mechanical properties of the Pd-based superalloys are studied by first principles calculations. In this work, we discuss the effect of Pd-based superalloys mad... The thermodynamic stabilities, electronic structures, and mechanical properties of the Pd-based superalloys are studied by first principles calculations. In this work, we discuss the effect of Pd-based superalloys made from Al, Si, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Hf, Ta, W, Re, Os, Ir and Pt, and we also calculate a face centered cubic (fcc) structure 222 superalloy including 31 Pd atoms and one alloying element TM (Pd31TM). The mixing energies of these Pd-Based superalloys are negative, indicating that all Pd-based superalloys are thermodynamically stable. The Pd31Mn has the lowest mixing energy with a value of-0.97 eV/atom. The electronic structures of the Pd-based superalloys are also studied, the densities of states, elastic constants and moduli of the mechanical properties of the Pd-based superalloys are determined by the stress-strain method and Voigt-Reuss-Hill approximation. It is found that Pd31TM is mechanically stable, and Pd31Tc has the largest C11, with a value 279.7 GPa. The Pd31Cr has the highest bulk modulus with a value of 299.8 GPa. The Pd31Fe has the largest shear modulus and Youngs modulus with the values of 73.8 GPa and 195.2 GPa, respectively. By using the anisotropic index, the anisotropic mechanical properties of the Pd31TM are discussed, and three-dimensional (3D) surface contours and the planar projections on (001) and (110) planes are also investigated by the Young modulus. 展开更多
关键词 high temperature superalloy first-principles calculations palladium mechanical properties anisotropy
下载PDF
Thermal fatigue behavior of K125L superalloy 被引量:2
3
作者 Li-Kui Ning Zhi Zheng +4 位作者 Feng-Quan An Song Tang Jian Tong Hui-Si Ji Hui-Wen Yu 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期172-176,共5页
The thermal fatigue behavior of K125 L superalloy at the peak temperature of 1,050 °C was investigated by optical microscope(OM), X-ray diffraction(XRD), and scanning electron microscope(SEM). The experimen... The thermal fatigue behavior of K125 L superalloy at the peak temperature of 1,050 °C was investigated by optical microscope(OM), X-ray diffraction(XRD), and scanning electron microscope(SEM). The experimental results show that the crack initiation sites of tested alloys are at the V-notch tip and the V-notch tip propagates by way of continuous cracking along grain boundaries. The formation of high-temperature oxides and MC carbides accelerates the crack propagation, and no secondary carbides precipitate out. Oxides between cracks are mainly the Al2O3 as well as Cr_2O_3, and carbides are Ta-rich and Tirich MC carbides. 展开更多
关键词 K125L superalloy Thermal fatigue high temperature oxidation Carbides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部