期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Preparation and High-Temperature Water-Gas Shift Catalytic Features of La_(1-x)Ce_x FeO_3 Perovskite 被引量:1
1
作者 马红钦 朱慧铭 +2 位作者 谭欣 张继炎 张鎏 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期357-360,共4页
Based on water-gas shift reaction mechanism and perovskite compounds characteristics, La_(1- x )Ce_ x FeO_3 (.K) perovskite were designed and prepared as shift catalysts. DTA and XRD results reveal that La_(1- x )Ce_ ... Based on water-gas shift reaction mechanism and perovskite compounds characteristics, La_(1- x )Ce_ x FeO_3 (.K) perovskite were designed and prepared as shift catalysts. DTA and XRD results reveal that La_(1- x )Ce_ x FeO_3 can be formed at 730~760 ℃ by mechanic-mix thermal decomposition method. Activity and heat-resisting tests show that La_(1- x )Ce_ x FeO_3 ((.K)) possess high thermal stability if x is less than or equals to 0.5. But when x is greater than 0.5, La_(1- x )Ce_ x FeO_3 (.K) will be converted into ceria and magnetite partially or completely under shift reaction conditions. In the case of x =0.5, the conversion of CO is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly reduces the high temperature activity, and has little impact on the thermal stability. La_(0.5)Ce_(0.5)FeO_3 (.K) is a promising chromium-free high temperature shift catalyst. 展开更多
关键词 catalytic chemistry perovskite compounds chromium-free high-temperature shift catalyst rare earths
下载PDF
For more and purer hydrogen-the progress and challenges in water gas shift reaction 被引量:2
2
作者 Limin Zhou Yanyan Liu +8 位作者 Shuling Liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao Liu Jie Gao Kang Sun Baojun Li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 water gas shift reaction Hydrogen production Heterogeneous catalysis Reaction Mechanism Single atomic catalysts
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:14
3
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide REVERSE water gas shift reaction METHANATION SUPPORTED metal catalyst Mechanism
下载PDF
A Novel γ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction 被引量:10
4
作者 Abolfazl Gharibi Kharaji Ahmad Shariati Mohammad Ali Takassi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期1007-1014,共8页
In reverse water gas shift (RWGS) reaction COa is converted to CO which in turn can be used to pro- duce beneficial chemicals such as methanol. In the present study, Mo/AlaO3, Fe/AlaO3 and Fe-Mo/Al2O3 catalysts were... In reverse water gas shift (RWGS) reaction COa is converted to CO which in turn can be used to pro- duce beneficial chemicals such as methanol. In the present study, Mo/AlaO3, Fe/AlaO3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re- actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/AlzO3 catalyst enhances its activity as compared to Fe/AlaO3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/AlzO3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fez(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fez(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction. 展开更多
关键词 reverse water gas shift reaction Fe-Mo/Al2O3 catalyst SELECTIVITY stability REDUCIBILITY
下载PDF
Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al_2O_3 catalyst for water gas shift reaction 被引量:6
5
作者 Yixin Lian Huifang Wang Quanxing Zheng Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期161-166,共6页
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe... Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction. 展开更多
关键词 Co-Mo catalyst reduction SULFIDATION mixed support water gas shift
下载PDF
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:3
6
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 Pt/CeO_(2)catalysts watergas shift reaction Support doping Bimetallic alloying
下载PDF
Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction 被引量:1
7
作者 Li Wei Zhu Jianhua Mou Zhanjun 《Petroleum Science》 SCIE CAS CSCD 2007年第1期75-80,共6页
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials durin... The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts. 展开更多
关键词 water gas shift reaction Γ-FE2O3 cobalt-promoted catalyst iron-based catalyst
下载PDF
Promotion effect of Re additive on the bifunctional Ni catalysts for methanation coupling with water gas shift of biogas: Insights from activation energy
8
作者 Xinxin Dong Baosheng Jin +1 位作者 Zhiwei Kong Yiqing Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1628-1636,共9页
The cheap manganese sand was first modified by H2O2 and was further creatively utilized as Ni-based catalyst support.In order to enhance the catalytic performance,Re was added into the Ni-based catalyst and the promot... The cheap manganese sand was first modified by H2O2 and was further creatively utilized as Ni-based catalyst support.In order to enhance the catalytic performance,Re was added into the Ni-based catalyst and the promotion effect of Re on the methanation coupling with water gas shift of biogas was investigated from the perspective of activation energy.It was found that CH4 and CO2 formation rates,which separately represented the reaction rate of methanation and water gas shift,were both enhanced after Re addition compared to non-added catalyst.Two kinetics models including empirical model and K-model were employed and from the results of calculation,it showed that Re selectively decreased the activation energy of methanation reaction and had little impact on the activation energy of water gas shift.The increased CO2 formation rate was owing to the assistance of accelerated H2O production from methanation rather than the activation energy change in water gas shift. 展开更多
关键词 PROMOTER catalyst Nickel METHANATION water gas shift Kinetics
下载PDF
Computational Screening of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)MXene Catalysts for Water-Gas Shift Reaction 被引量:1
9
作者 Yang Meng Haiyan Wang +2 位作者 Jin-Xia Liang Chun Zhu Jun Li 《Precision Chemistry》 2024年第2期70-80,共11页
Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial techn... Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions. 展开更多
关键词 single-atom catalyst(SAC) density functional theory(DFT) water gas shift(WGS)reaction defective MXene thermocatalysis
原文传递
Preparation and Water-Gas Shift Catalytic Activities of the Perovskite Type Complex Oxide La_(1-x) Ce_xFeO_3
10
作者 马红钦 谭欣 +2 位作者 朱慧铭 张继炎 张鎏 《Transactions of Tianjin University》 EI CAS 2003年第2期83-88,共6页
The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-... The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-x Ce xFeO 3(·K) has a good thermal stability if x is less than or equal to 0.5 . But when x is greater than 0.5 , La 1-x Ce xFeO 3(·K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x=0.5, the conversion of carbon monoxide is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity, and has little impact on the thermal stability. La 0.5 Ce 0.5 FeO 3 (·K) is a promising chromium free high temperature shift catalyst. 展开更多
关键词 rare earth complex oxide perovskite type compound chromium free high temperature shift catalyst
下载PDF
Three-stage pyrolysis–steam reforming–water gas shift processing of household,commercial and industrial waste plastics for hydrogen production
11
作者 Rayed Alshareef Robert Sait-Stewart +1 位作者 Mohamad A.Nahil Paul T.Williams 《Waste Disposal and Sustainable Energy》 EI CSCD 2024年第1期25-37,共13页
Five common single plastics and nine different household,commercial and industrial waste plastics were processed using a three-stage(i)pyrolysis,(ii)catalytic steam reforming and(iii)water gas shift reaction system to... Five common single plastics and nine different household,commercial and industrial waste plastics were processed using a three-stage(i)pyrolysis,(ii)catalytic steam reforming and(iii)water gas shift reaction system to produce hydrogen.Pyrolysis of plastics produces a range of different hydrocarbon species which are subsequently catalytically steam reformed to produce H_(2)and CO and then undergo water gas shift reaction to produce further H_(2).The process mimics the commercial process for hydrogen production from natural gas.Processing of the single polyalkene plastics(high-density polyethylene(HDPE),low-density polyethylene(LDPE),and polypropylene(PP))produced similar H_(2)yields between 115 mmol and 120 mmol per gram plastic.Even though PS produced an aromatic product slate from the pyrolysis stage,further stages of reforming and water gas shift reaction produced a gas yield and composition similar to that of the polyalkene plastics(115 mmol H_(2)per gram plastic).PET gave significantly lower H_(2)yield(41 mmol per gram plastic)due to the formation of mainly CO,CO_(2)and organic acids from the pyrolysis stage which were not conducive to further reforming and water gas shift reaction.A mixture of the single plastics typical of that found in municipal solid waste produced a H_(2)yield of 102 mmol per gram plastic.Knowing the gas yields and composition from the single plastics enabled an estimation of the yields from a simulated waste plastic mixture and a‘real-world’waste plastic mixture to be determined.The different household,commercial and industrial waste plastic mixtures produced H_(2)yields between 70 mmol and 107 mmol per gram plastic.The H_(2)yield and gas composition from the single waste plastics gave an indication of the type of plastics in the mixed waste plastic samples. 展开更多
关键词 Waste plastic Hydrogen catalyst Pyrolysis reforming water gas shift
原文传递
Mechanism investigation and catalyst screening of high-temperature reverse water gas shift reaction 被引量:1
12
作者 Yanying Qi Yi-An Zhu De Chen 《Green Chemical Engineering》 2020年第2期131-139,共9页
Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hi... Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS. 展开更多
关键词 Reverse water gas shift Microkinetic modeling catalyst screening Scaling relationship
原文传递
Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic effect
13
作者 Gianluca Landi Giulia Sorbino +2 位作者 Fortunato Migliardini Giovanna Ruoppolo Almerinda Di Benedetto 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第12期1962-1972,共11页
Within the“hydrogen chain”,the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes.Despite the commercia... Within the“hydrogen chain”,the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes.Despite the commercial application of the high-temperature water gas shift,novel catalysts characterized by higher intrinsic activity(especially at low temperatures),good thermal stability,and no chromium content are needed.In this work,we propose bimetallic iron-copper catalysts supported on ceria,characterized by low active phase content(iron oxide+copper oxide<5 wt%).Fresh and used samples were characterized by inductively coupled plasma mass spectrometry,X-ray diffraction,nitrogen physisorption,scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy,and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity.The sample with iron/copper≈1 and 4 wt%active phase content showed the best catalytic properties in terms of turnover frequency,no methane formation,and stability.Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction,leading to outstanding redox behavior. 展开更多
关键词 water gas shift IRON copper bimetallic catalysts CERIA hydrogen
原文传递
Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria 被引量:4
14
作者 Tatyana Tabakova Lyuba Ilieva +4 位作者 Ivan Ivanov Maela Manzoli Rodolfo Zanella Petya Petrova Zbigniew Kaszkur 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第4期383-392,共10页
The utilization of pure hydrogen as an energy source in fuel cells gave rise to renewed interest in developing active and stable water-gas shift catalysts. Gold catalysts have proven to be very efficient for water-gas... The utilization of pure hydrogen as an energy source in fuel cells gave rise to renewed interest in developing active and stable water-gas shift catalysts. Gold catalysts have proven to be very efficient for water-gas shift reaction at low temperature. The aim of the present study was to investigate the effect of:(i) different preparation methods(impregnation and coprecipitation) to obtain a modified ceria support,and(ii) the amount of Y_2 O_3(1.0 wt%, 2.5 wt%, 5.0 wt% and 7.5 wt%) as dopant on the water-gas shift activity of Au/CeO_2 catalysts. An extended characterization by means of S_(BET), XRD, HRTEM/HAADF, FTIR,H_2-TPR and CO-TPR measurements in combination with careful evaluation of the catalyst behavior allowed to shed light on the parameters governing the water-gas shift activity. The catalysts show very high activity(>90% CO conversion) in the temperature range 180-220 ℃,with a slightly better performance of the gold catalysts on supports prepared by impregnation. The decreased activity with increasing Y_2 O_3 concentration is related to the hindering of oxygen mobility due to ordering of surface oxygen vacancies in vicinity of segregated Y^(3+). The effect of catalyst pre-treatments and the stability of the best performing samples were examined as well. 展开更多
关键词 GOLD catalyst water gas shift reaction Doped CERIA YTTRIUM Hydrogen production RARE earths
原文传递
Supported metal catalysts at the single-atom limit – A viewpoint 被引量:5
15
作者 Maria Flytzani-Stephanopoulos 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1432-1442,共11页
An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and select... An account of recent work on supported single‐atom catalyst design is given here for reactions as diverse as the low‐temperature water‐gas shift,methanol steam reforming,selective ethanol dehydrogenation,and selective hydrogenation of alkynes and dienes.It is of fundamental interest to investigate the intrinsic activity and selectivity of the active metal atom site and compare them to the properties of the corresponding metal nanoparticles and sub‐nm clusters.It is also important to understand what constitutes a stable active metal atom site in the various reaction environments,and maximize their loadings to allow us to design robust catalysts for industrial applications.Combined activity and stability studies,ideally following the evolution of the active site as a function of catalyst treatment in real time are recommended.Advanced characterization methods with atomic resolution will play a key role here and will be used to guide the design of new catalysts. 展开更多
关键词 Single atom alloys Gold PALLADIUM Supported single atom catalysts watergas shift Methanol steam reforming Ethanol dehydrogenation Butadiene hydrogenation
下载PDF
High temperature H_(2)S selective oxidation on a copper-substituted hexaaluminate catalyst: A facile process for treating low concentration acid gas 被引量:1
16
作者 Xin Xu Ganggang Li +2 位作者 Fenglian Zhang Guoxia Jiang Zhengping Hao 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1279-1282,共4页
H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formati... H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formation of SO_(2) and catalyst deactivation inevitably occur, due to the temperature rise of fixed reaction bed caused by the exothermic reaction. Catalyst with high activity in wide operating temperature window, especially in high temperature range, is urgently needed. In this paper, a series of copper-substituted hexaaluminate catalysts (LaCu_(x), x = 0, 0.5, 1, 1.5, 2, 2.5) were prepared and investigated for the H_(2)S selective oxidation reaction at high temperature conditions (300-550℃). The LaCu_(1) catalyst exhibited excellent catalytic performance and great stability, which was attributed to the best reductive properties and proper pore structure. Besides, two facile deep processing paths were proposed to eliminate the remaining H_(2)S and SO_(2) in the tail gas. 展开更多
关键词 Low concentration acid gas H_(2)S selective oxidation high temperature Hexaaluminate catalyst
原文传递
高活性低水比GS-HA乙苯脱氢催化剂工业应用总结
17
作者 黎志刚 《炼油技术与工程》 CAS 2023年第5期46-49,共4页
介绍了GS-HA乙苯脱氢催化剂在中国石化海南炼油化工有限公司80 kt/a苯乙烯装置低水比工业试验,分析了低水比运行期间装置的节能效果和产生的经济效益。结果表明:该催化剂的乙苯转化率和苯乙烯选择性保持在64.5%以上和96.4%以上,说明该... 介绍了GS-HA乙苯脱氢催化剂在中国石化海南炼油化工有限公司80 kt/a苯乙烯装置低水比工业试验,分析了低水比运行期间装置的节能效果和产生的经济效益。结果表明:该催化剂的乙苯转化率和苯乙烯选择性保持在64.5%以上和96.4%以上,说明该剂催化性能和稳定性优异,装置综合能耗降低1950.88 MJ/t(以苯乙烯计),节约蒸汽5.21 t/h,苯乙烯产量增加13.4 t/d,创造了良好的经济效益。运行后期平均水比为1.25,乙苯转化率保持在65.4%以上,苯乙烯选择性在96.8%以上,苯乙烯单体收率大于63.4%,反应性能优异,苯乙烯产量稳定,催化剂稳定性好,装置运行周期达到57个月,创国内装置单批催化剂满负荷运行的最长纪录。 展开更多
关键词 高活性 低水比 乙苯脱氢催化剂 反应器升温 转化率 选择性 综合能耗 经济效益
下载PDF
A STUDY ON PHYSICAL AND SURFACE PROPER TIES OF THE IRON-CHROMIUM HIGH TEMPER ATURE SHIFT CATALYST WITH THE ADDITIVE ALUMINUM HYDROXIDE
18
作者 张惠良 陈文锋 胡梅生 《Chinese Science Bulletin》 SCIE EI CAS 1990年第15期1266-1270,共5页
A study on the magnetic properties and the Mssbauer spectra of the additive aluminum hydroxide has been reported before. In this note, the XPS(X-ray photoelectron spectrometry), TEM(transmission electron microscopy)an... A study on the magnetic properties and the Mssbauer spectra of the additive aluminum hydroxide has been reported before. In this note, the XPS(X-ray photoelectron spectrometry), TEM(transmission electron microscopy)and MACA(micro-area chemical analysis) have been used to investigate the effect of the additive aluminum hydroxide on the physical and surface properties of the iron-chromium high temperature shift catalyst. 展开更多
关键词 iron-chromium high temperature shift catalyst the effect of aluminum hydroxide PHYSICAL and SURFACE properties.
原文传递
Catalytic performance of Co-Mo-Ce-K/γ-Al_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas
19
作者 Yuqiong ZHAO Yongfa ZHANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期457-460,共4页
The catalytic performance of Co-Mo-Ce-K/γAl_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction(XRD)and temperature-programmed reduction(TPR).The results indicate t... The catalytic performance of Co-Mo-Ce-K/γAl_(2)O_(3) catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction(XRD)and temperature-programmed reduction(TPR).The results indicate that Ce and K have a synergistic effect on promoting the catalytic activity,and the Co-Mo-Ce-K/γAl_(2)O_(3) catalyst with 3.0 wt-%CeO2 and 6.0 wt-%K_(2)O exhibits the highest activity.CeO2 favors Co dispersion and mainly produces an electronic effect.TPR characterization results indicate that the addition of CeO2-K_(2)O in the Co-Mo-Ce-K/γ-Al_(2)O_(3) catalyst decreases the reduction temperature of active components,and part of octahedrally coordinated Mo6+transforms into tetrahedrally coordinated Mo6+,which has a close relationship with the catalytic activity. 展开更多
关键词 coke oven gas water gas shift reaction sulfurtolerant catalyst cerium dioxide
原文传递
无铬CO高温变换催化剂的研究Ⅱ.过渡元素对高变催化剂结构与性能的影响 被引量:31
20
作者 郑起 徐建本 +2 位作者 魏可镁 魏明灯 林性贻 《催化学报》 SCIE CAS CSCD 北大核心 1999年第1期21-24,共4页
通过XRD,BET和XPS表征及反应性能测定表明,铁系高变催化剂中加入的过渡元素能够进入Fe3O4晶格形成固溶体,并使催化剂的晶胞参数随着加入元素离子半径的增大而增大,晶粒度明显变小,比表面积增大,起到铬的作用,催化... 通过XRD,BET和XPS表征及反应性能测定表明,铁系高变催化剂中加入的过渡元素能够进入Fe3O4晶格形成固溶体,并使催化剂的晶胞参数随着加入元素离子半径的增大而增大,晶粒度明显变小,比表面积增大,起到铬的作用,催化剂的活性和热稳定性提高.发现部分过渡元素具有富集OH-的特性,使催化剂在较低的汽/气比条件下具有较高的催化活性.研制成功的B121型无铬高变催化剂性能达到铁铬系高变催化剂的技术指标. 展开更多
关键词 氧化碳 铁系 催化剂 高温变换 水煤气制氢
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部