期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Geochemical characteristics and genetic mechanism of the high-N2 shale gas reservoir in the Longmaxi Formation, Dianqianbei Area, China 被引量:6
1
作者 Ji-Lin Li Ting-Shan Zhang +6 位作者 Yan-Jun Li Xing Liang Xin Wang Jie-Hui Zhang Zhao Zhang Hong-Lin Shu Da-Qian Rao 《Petroleum Science》 SCIE CAS CSCD 2020年第4期939-953,共15页
As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration ri... As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration risk.Accordingly,this study explores the genesis of shale gas reservoir and the mechanism of nitrogen enrichment through investigating shale gas compositions,isotope features,and geochemical characteristics of associated gases.The high-nitrogen shale gas reservoir in the Longmaxi Formation is demonstrated to be a typical dry gas reservoir.Specifically,the alkane carbon isotope reversal is ascribed to the secondary cracking of crude oil and the Rayleigh fractionation induced by the basalt mantle plume.Such a thermogenic oil-type gas reservoir is composed of both oil-cracking gas and kerogen-cracking gas.The normally high nitrogen content(18.05%-40.92%) is attributed to organic matter cracking and thermal ammoniation in the high-maturity stage.Specifically,the high heat flow effect of the Emeishan mantle plume exacerbates the thermal cracking of organic matter in the Longmaxi Formation shale,accompanied by nitrogen generation.In comparison,the abnormally high nitrogen content(86.79%-98.54%) is ascribed to the communication between the atmosphere and deep underground fluids by deep faults,which results in hydrocarbon loss and nitrogen intrusion,acting as the key factor for deconstruction of the primary shale gas reservoir.Results of this study not only enrich research on genetic mechanism of high-maturity N_@ shale gas reservoirs,but also provide theoretical guidance for subsequent gas reservoir resource evaluation and well-drilling deployment in this area. 展开更多
关键词 Longmaxi Formation Shale gas reservoir ISOTOPE high nitrogen content Genetic mechanism
下载PDF
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China 被引量:7
2
作者 MA Xinhua XIE Jun +1 位作者 YONG Rui ZHU Yiqing 《Petroleum Exploration and Development》 2020年第5期901-915,共15页
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth... Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3. 展开更多
关键词 southern Sichuan Basin Lower Silurian Longmaxi Formation deeply buried shale gas high production control factors deep water and deep burial shale gas reservoir
下载PDF
Rate transient analysis methods for water-producing gas wells in tight reservoirs with mobile water
3
作者 Qingyan Yu Ying Jia +2 位作者 Pengcheng Liu Xiangyang Hu Shengye Hao 《Energy Geoscience》 EI 2024年第1期311-320,共10页
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves... Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water. 展开更多
关键词 gas reservoirs with mobile water gas-water two phase flow high stress sensitivity Equivalent homogenous phase Rate transient analysis
下载PDF
Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs 被引量:3
4
作者 LEI Qun XU Yun +7 位作者 YANG Zhanwei CAI Bo WANG Xin ZHOU Lang LIU Huifeng XU Minjie WANG Liwei Li Shuai 《Petroleum Exploration and Development》 CSCD 2021年第1期221-231,共11页
By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formati... By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure. 展开更多
关键词 ultra-deep oil and gas reservoir high temperature and high pressure reservoir stimulation technical status technical difficulties development direction
下载PDF
Enhancement of a foaming formulation with a zwitterionic surfactant for gas mobility control in harsh reservoir conditions 被引量:1
5
作者 Miguel Angel Roncoroni Pedro Romero +5 位作者 Jesús Montes Guido Bascialla Rosario Rodríguez Ramón Rodríguez Pons-Esparver Luis Felipe Mazadiego María Flor García-Mayoral 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1409-1426,共18页
This work presents the design of a robust foam formulation that tolerates harsh reservoir conditions(high salinity,high divalent ion concentration,high temperature,light oil,and hydrocarbon injection gas)in a sandston... This work presents the design of a robust foam formulation that tolerates harsh reservoir conditions(high salinity,high divalent ion concentration,high temperature,light oil,and hydrocarbon injection gas)in a sandstone reservoir.For this,we selected anionic Alpha Olefin Sulfonate(AOS)surfactants and studied their synergistic effects in mixtures with zwitterionic betaines to enhance foam performance.The laboratory workflow used to define the best formulation followed a de-risking approach in three consecutive phases.First,(phase 1)the main surfactant(AOS)was selected among a series of commercial candidates in static conditions.Then,(phase 2)the betaine booster to be combined with the previously selected AOS was chosen and their ratio optimized in static conditions.Subsequently,(phase 3)the surfactant/booster ratio was optimized under dynamic conditions in a porous medium in the absence and the presence of oil.As a result of this study,a mixture of an AOS C14-C16 and cocamidopropyl hydroxysultaine(CAPHS)was selected as the one having the best performance.The designed formulation was proven to be robust in a wide range of conditions.It generated a strong and stable foam at reservoir conditions,overcoming variations in salinity and foam quality,and tolerated the presence of oil. 展开更多
关键词 gas mobility control Foam enhanced oil recovery(EOR) Foam stability high temperature high salinity reservoir Surfactant formulation
下载PDF
Numerical Simulation of Oil and Gas Two-Phase Flow in Deep Condensate Gas Reservoirs in Bohai Buried Hills 被引量:1
6
作者 Zhennan Gao Xianbo Luo +2 位作者 Lei Zhang Qi Cheng Yingxu He 《Open Journal of Applied Sciences》 2023年第11期2068-2079,共12页
The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condens... The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condensate liquid. During the early stage of depletion development, the production gas-oil ratio (GOR) and production capacity remain relatively stable, which is inconsistent with the conventional reverse condensate seepage law. In view of the static and dynamic conflict in development and production, indoor high-temperature and high-pressure PVT experiment was carried out to reveal the mist-like condensation phenomenon of fluids in the BZ19-6 formation. And the seepage characteristics of condensate gas reservoirs with various degrees of depletion under the condition of HTHP were analyzed based on production performance. The change rule of fluid phase state was analyzed in response to the characterization difficulties of the seepage mechanism. The fluid state was described using the miscible mechanism. And the interphase permeability interpolation coefficient was introduced based on interfacial tension. By doing so, the accurate characterization of the “single-phase flow of condensate gas-near-miscible mist-like quasi single-phase flow-oil-gas two-phase flow” during the development process was achieved. Then the accurate fitting of key indicators for oilfield development was completed, and the distribution law of formation pressure and the law of condensate oil precipitation under different reservoir conditions are obtained. Based on research results, the regulation strategy of variable flow rate production was developed. Currently, the work system has been optimized for 11 wells, achieving a “zero increase” in the GOS of the gas field and an annual oil increase of 22,000 cubic meters. 展开更多
关键词 high Temperature and high Pressure Condensate gas reservoirs Mist Flow Characterization of Seepage Flow History Match Production Regulation
下载PDF
A Study of Thin Sandstone Reservoirs by High-resolution Seismic Inversion
7
作者 Ning Songhua 《Petroleum Science》 SCIE CAS CSCD 2006年第3期32-35,共4页
In this paper seismic inversion was used as a key technique and the seismic wavelet most suitable to the actual underground situation was extracted with the higher-order statistics algorithm. The wavelets extracted in... In this paper seismic inversion was used as a key technique and the seismic wavelet most suitable to the actual underground situation was extracted with the higher-order statistics algorithm. The wavelets extracted in this way and the wavelets extracted with the seismic statistics techniques were used separately for inverting the seismic data of the southern part of Tahe oilfield, Tarim basin. The results showed that the resolution of the wavelet inversion with the higher-order statistics method was greatly improved, and the wavelet-inverted section could better distinguish the thin sandstone reservoirs of the upper and lower Carboniferous and their lateral distribution, providing a reliable basis of analysis for the study of thin sandstone reservoirs. 展开更多
关键词 reservoir bed subtle oil/gas pool high resolution seismic inversion
下载PDF
Experimental research on reservoir sensitivity to stress and impacts on productivity in Kela 2 Gas Field 被引量:1
8
作者 SUN Longde SONG Wenjie JIANG Tongwen 《Science China Earth Sciences》 SCIE EI CAS 2004年第z2期159-166,共8页
Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coeffi-cient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the... Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coeffi-cient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the principal source for West-East Gas Development Project. In order to correctly evaluate the elastic-plastic deformation of rocks caused by the pressure decline during production, some researches, as the experiment on reservoir sensitivity to stress of gas filed with abnormal high pressure, are made. By testing the rock mechanic properties, porosities and permeabilities at different temperature and pressure of 342 core samples from 5 wells in this area, the variations of petro-physical properties at changing pressure are analyzed, and the ap-plicable inspection relationship is concluded. The average productivity curve with the reservoir sensitivity to stress is plotted on the basis of the research, integrated with the field-wide produc-tivity equation. The knowledge lays a foundation for the gas well productivity evaluation in the field and the gas field development plan, and provides effective techniques and measures for basic research on the development of similar gas fields. 展开更多
关键词 Kela 2 gas Field ABNORMAL high pressure OVERBURDEN PRESSURE experiment reservoir sensitivity to stress productivity petro-physical properties of reservoir.
原文传递
Reservoir accumulation conditions and key exploration&development technologies for Keshen gas field in Tarim Basin 被引量:3
9
作者 Haijun Yang Yong Li +10 位作者 Yangang Tang Ganglin Lei Xiongwei Sun Peng Zhou Lu Zhou Anming Xu Jingjie Tang Wenhui Zhu Jiangwei Shang Weili Chen Mei Li 《Petroleum Research》 2019年第4期295-313,共19页
The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a numb... The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field. 展开更多
关键词 Oil and gas accumulation Three-dimensional mountainous seismic EXPLORATION Ultra-deep high temperature and high pressure gas reservoirs high efficiency exploration and DEVELOPMENT Keshen gas field Tarim Basin
原文传递
Nitrogen enhanced drainage of CO2 rich coal seams for mining
10
作者 Luke D.Connell Regina Sander +3 位作者 Michael Camilleri Deasy Heryanto Zhejun Pan Nicholas Lupton 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期755-761,共7页
Coal seams with high CO_2 gas contents can be difficult to drain gas for outburst management. Coal has a high affinity for CO_2 with adsorption capacities typically twice that of CH_4. This paper presents an analysis ... Coal seams with high CO_2 gas contents can be difficult to drain gas for outburst management. Coal has a high affinity for CO_2 with adsorption capacities typically twice that of CH_4. This paper presents an analysis of nitrogen injection into coal to enhance drainage of high CO_2 gas contents. Core flooding experiments were conducted where nitrogen was injected into coal core samples from two Australian coal mining basins with initial CO_2 gas contents and pressures that could be encountered during underground mining. Nitrogen effectively displaced the CO_2 with mass balance analysis finding there was only approximately 6%–7% of the original CO_2 gas content residual at the end of the core flood. Using a modified version of the SIMED II reservoir simulator, the core flooding experiments were history matched to determine the nitrogen and methane sorption times. It was found that a triple porosity model(a simple extension of the Warren and Root dual porosity model) was required to accurately describe the core flood observations. The estimated model properties were then used in reservoir simulation studies comparing enhanced drainage with conventional drainage with underground in seam boreholes. For the cases considered, underground in seam boreholes were found to provide shorter drainage lead times than enhanced drainage to meet a safe gas content for outburst management. 展开更多
关键词 gas drainage high CO2 ECBM reservoir simulation
下载PDF
Formation and accumulation of oil and gas in marine carbonate sequences in Chinese sedimentary basins 被引量:16
11
作者 JIN ZhiJun 《Science China Earth Sciences》 SCIE EI CAS 2012年第3期368-385,共18页
Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sediment... Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sedimentary basins in recent years. The recently discovered giant Tahe Oil Field and Puguang Gas Field have provided geological entities for further studies of the formation and accumulation of oil and gas in marine carbonate sequences. Marine carbonate sequences in China are characterized by old age, multiple structural deformation, differential thermal evolution of source rocks, various reservoir types (i.e. reef-bank complex and paleo-weathered crust karst reservoir), uneven development of caprocks, especially gypsum seal, and multi-episodes of hydrocarbon accumulation and readjustment. As a result, the formation of hydrocarbon accumulations in the Chinese marine carbonate sequences has the following features: (i) the high-quality marine source rocks of shale and calcareous mudstone are often associated with siliceous rocks or calcareous rocks and were deposited in slope environments. They are rich in organic matter, have a higher hydrocarbon generation potential, but experienced variable thermal evolutions in different basins or different areas of the same basin. (ii) High quality reservoirs are controlled by both primary depositional environments and later modifications including diagenetic modifications, structural deformations, and fluid effects. (iii) Development of high-quality caprocks, especially gypsum seals, is the key to the formation of large-and medium-sized oil and gas fields in marine carbonate sequences. Gypsum often constitutes the caprock for most of large sized gas fields. Given that Chinese marine carbonate sequences are of old age and subject to multiple episodes of structural deformation and superposition, oil and gas tend to accumulate in the slopes and structural hinge zones, since the slopes favor the development of effective assemblage of source-reservoir-caprock, high quality source rocks, good reservoirs such as reef-bank complex, and various caprocks. As the structural hinge zones lay in the focus area of petroleum migration and experienced little structural deformation, they are also favorable places for hydrocarbon accumulation and preservation. 展开更多
关键词 marine carbonate sequences oil and gas accumulation source rock high quality reservoir CAPROCK depositional slope structural hinge zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部