Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising...Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising due to its intrinsic high hydrogen capacity.Hydrolysis reaction of LSHS materials occurs at moderate conditions,indicating the potential for portable applications.At present,most of review work focuses on the improvement of material performance,especially the catalysts design.This part is important,but the others,such as operation modes,are also vital to to make full use of material potential in the practical applications.Different operation modes of hydrolysis reaction have an impact on hydrogen capacity to various degrees.For example,hydrolysis in solution would decrease the hydrogen capacity of hydrogen generator to a low value due to the excessive water participating in the reaction.Therefore,application-oriented operation modes could become a key problem for hydrolysis reaction of LSHS materials.In this paper,the operation modes of hydrolysis reaction and their practical applications are mainly reviewed.The implements of each operation mode are discussed and compared in detail to determine the suitable one for practical applications with the requirement of high energy density.The current challenges and future directions are also discussed.展开更多
High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized b...High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.展开更多
A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid so...A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.展开更多
Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room te...Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room temperature,giving nearly quantitative yields. The compounds obtained were fully characterized by IR,MS and NMR spectroscopies. The structures of L2 and L3 were determined by single crystal X-ray diffraction analysis. No noticeable solvatochromism was observed in either one-photon absorption or one-photon excited fluorescence spectra. All of the compounds have high fluorescence quantum yields and long fluorescence lifetime. The linear and nonlinear optical properties of the compounds were investigated both experimentally and theoretically. Interestingly,the position of the nitrogen atom from pyridine influences their two-photon absorption across-sections.展开更多
A novel series of Ce^3+-doped Yb3 Al(5-x)GaxO(12)(x = 0, 1,2, 3,4, 5) powders of ytterbium aluminum gallium garnets were synthesized by high temperature solid-state reaction in a carbon reducing atmosphere. The...A novel series of Ce^3+-doped Yb3 Al(5-x)GaxO(12)(x = 0, 1,2, 3,4, 5) powders of ytterbium aluminum gallium garnets were synthesized by high temperature solid-state reaction in a carbon reducing atmosphere. The ytterbium aluminum garnets were characterized by X-ray powder diffraction, UV-Vis diffuse reflectance spectra, photoluminescence spectra and decay curves. Moreover, the substitution effect for the Al^3+ sites with Ga^3+ in 0.5 at%Ce:Yb3 Al(5-x)GaxO(12)(x = 0,1, 2, 3, 4, 5) garnets were discussed. With the increase of Ga^3+ ion concentration, the visible absorption peaks within 400-450 nm have blue shift phenomenon,while the absorption peaks in the range of 330-350 nm and the absorption band edge red shifts.Furthermore, the short decay times are very short with less than 10 ns due to the Yb^3+ + Ce^3+→ Yb^2+ + Ce^4+ electron transfer reaction.展开更多
基金financially supported by the National Key R&D Program of China(2022YFE0101300)the National Natural Science Foundation of China(52176203 and 52050027)the China Education Association for International Exchange(202006)。
文摘Hydrogen storage and delivery technology is still a bottleneck in the hydrogen industry chain.Among all kinds of hydrogen storage methods,light-weight solid-state hydrogen storage(LSHS)materials could become promising due to its intrinsic high hydrogen capacity.Hydrolysis reaction of LSHS materials occurs at moderate conditions,indicating the potential for portable applications.At present,most of review work focuses on the improvement of material performance,especially the catalysts design.This part is important,but the others,such as operation modes,are also vital to to make full use of material potential in the practical applications.Different operation modes of hydrolysis reaction have an impact on hydrogen capacity to various degrees.For example,hydrolysis in solution would decrease the hydrogen capacity of hydrogen generator to a low value due to the excessive water participating in the reaction.Therefore,application-oriented operation modes could become a key problem for hydrolysis reaction of LSHS materials.In this paper,the operation modes of hydrolysis reaction and their practical applications are mainly reviewed.The implements of each operation mode are discussed and compared in detail to determine the suitable one for practical applications with the requirement of high energy density.The current challenges and future directions are also discussed.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020KE033,ZR2020ME051,ZR2019BEM013,ZR2021ME253)the Shandong Science and Technology Program (2021TSGC1122)+1 种基金the Shandong Postdoctoral Innovation Foundation (201903069)the Zibo Key Research and Development Project (2021SNPT0004,2021SNCG0076)。
文摘High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064andU1435206)。
文摘A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.
基金supported by a grant for the National Natural Science Foundation of China (20771001, 50703001, 50873001)Department of Education of Anhui Province (KJ2010A030)+1 种基金Team for Scientific Innovation Foundation of Anhui Province (2006KJ007TD)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation (Anhui University)
文摘Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room temperature,giving nearly quantitative yields. The compounds obtained were fully characterized by IR,MS and NMR spectroscopies. The structures of L2 and L3 were determined by single crystal X-ray diffraction analysis. No noticeable solvatochromism was observed in either one-photon absorption or one-photon excited fluorescence spectra. All of the compounds have high fluorescence quantum yields and long fluorescence lifetime. The linear and nonlinear optical properties of the compounds were investigated both experimentally and theoretically. Interestingly,the position of the nitrogen atom from pyridine influences their two-photon absorption across-sections.
基金Project supported by National Natural Science Foundation of China(11475242,51272263)K.C.Wong Magna Fund in Ningbo University
文摘A novel series of Ce^3+-doped Yb3 Al(5-x)GaxO(12)(x = 0, 1,2, 3,4, 5) powders of ytterbium aluminum gallium garnets were synthesized by high temperature solid-state reaction in a carbon reducing atmosphere. The ytterbium aluminum garnets were characterized by X-ray powder diffraction, UV-Vis diffuse reflectance spectra, photoluminescence spectra and decay curves. Moreover, the substitution effect for the Al^3+ sites with Ga^3+ in 0.5 at%Ce:Yb3 Al(5-x)GaxO(12)(x = 0,1, 2, 3, 4, 5) garnets were discussed. With the increase of Ga^3+ ion concentration, the visible absorption peaks within 400-450 nm have blue shift phenomenon,while the absorption peaks in the range of 330-350 nm and the absorption band edge red shifts.Furthermore, the short decay times are very short with less than 10 ns due to the Yb^3+ + Ce^3+→ Yb^2+ + Ce^4+ electron transfer reaction.