With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi...With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements.展开更多
Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a n...Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance.展开更多
The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steel...The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels.展开更多
To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstru...To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.展开更多
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens...The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.展开更多
The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te...The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.展开更多
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg...Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.展开更多
Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate...Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.展开更多
The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Throug...The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Through the comparison of reduction in area and hot deformation resistance at 600-1300°C,the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one.The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software(TCW).The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6,which promote pearlite formation.The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one.This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis(EPMA),which improves the strength of grain boundaries.展开更多
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an...A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.展开更多
The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape ...The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis.展开更多
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat...The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.展开更多
The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have...The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have been investigated.The resistance to crack propagation is mainly de- termined by the plastic constrain ahead of the crack tip,the elastic energy and plastic work absorbed in the stress-strain field.These are connected with the state function of triaxial stress.The deformation history and strain characteristic during deformation of material are described by the flow line in which the deformation history and strain characteristic restrain the crack initiation at stage Ⅱ and the crack propagation at stage Ⅲ.The strain hardening rate may sensitively reflect the stress distribution and micro-fracture mechanism in the interi- or of material.展开更多
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-...The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.展开更多
High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation ...High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation process parameters will significantly affect the flow behavior. To precisely control the microstructures, researchers have conducted many studies to analyze the microstructure evolution law and deformation mechanism during hot compression. This review focuses on the microstructure evolution of high strength β titanium alloys during hot deformation, including dynamic recrystallization and dynamic recovery in the single-phase region and the dynamic evolution of the α phase in the two-phase region. Furthermore, the optimal hot processing regions, instability regions,and the relationship between the efficiency of power dissipation and the deformation mechanism in the hot processing map are summarized. Finally, the problems and development direction of using hot processing maps to optimize process parameters are also emphasized.展开更多
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen...The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.展开更多
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a...Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.展开更多
To systematically investigate the kinetics and formation mechanisms of intragranular ferrite(IGF), isothermal heat treatment in the temperature range of 450℃to 600℃ with holding for 30 s to 300 s, analysis of the ...To systematically investigate the kinetics and formation mechanisms of intragranular ferrite(IGF), isothermal heat treatment in the temperature range of 450℃to 600℃ with holding for 30 s to 300 s, analysis of the corresponding microstructures, and observation of the precipitated particles were conducted in V-N microalloyed 600 MPa high strength rebar steel. The potency of V(C,N) for IGF nucleation was also analyzed statistically. The results show that the dominant microstructure transforms from bainite(B) and acicular ferrite(AF) to grain boundary ferrite(GBF), intragranular polygonal ferrite(IPF), and pearlite(P) as the isothermal temperature increases from 450℃ to 600℃. When the holding time at 600℃ is extended from 30 s to 60 s, 120 s, and 300 s, the GBF content ranges from 6.0vol% to 6.5vol% and the IPF content increases from 0.5vol% to 2.8vol%, 13.1vol%, and 13.5vol%, respectively, because the ferrite transformation preferentially occurs at the grain boundaries and then occurs at the austenite grains. Notably, V(C,N) particles are the most effective nucleation site for the formation of IPF, accounting for 51% of the said formation.展开更多
The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were...The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.展开更多
The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The resear...The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.展开更多
文摘With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements.
文摘Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance.
基金supported by the National Science and Technology Infrastructure Platforms Construction Projects of China (Grant No2005DKA10400)the National Science Foundation of China (No50871021)
文摘The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels.
基金financially supported by the Scientific Research Foundation of Guangxi University (No.XBZ110407)
文摘To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.
基金financially supported by the National Natural Science Foundation of China(No.50904006)the Fundamental Research Funds for the Central Universities of China(No.FRT-TP-10-001A)
文摘The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.
基金Item Sponsored by National Key Fundamental Research and Development Project of China(G1998061503)National Science and Technology Development Project of China(2002BA314B08)
文摘The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.
文摘Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.
基金supported by the National Natural Science Foundation of China under grant No. 50605043
文摘Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.
基金supported by the National High-tech Research and Development Program of China (No.2009AA03Z518)
文摘The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Through the comparison of reduction in area and hot deformation resistance at 600-1300°C,the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one.The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software(TCW).The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6,which promote pearlite formation.The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one.This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis(EPMA),which improves the strength of grain boundaries.
基金financially supported by the National Key R&D Program of China(No.2017YFB1103200)the Independent Innovation Research Fund Project of Huazhong University of Science and Technology(No.2018KFYXMPT002)。
文摘A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.
文摘The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis.
基金financially supported by the National Natural Science Foundation of China (No. 51271035)The financial support of the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.
文摘The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have been investigated.The resistance to crack propagation is mainly de- termined by the plastic constrain ahead of the crack tip,the elastic energy and plastic work absorbed in the stress-strain field.These are connected with the state function of triaxial stress.The deformation history and strain characteristic during deformation of material are described by the flow line in which the deformation history and strain characteristic restrain the crack initiation at stage Ⅱ and the crack propagation at stage Ⅲ.The strain hardening rate may sensitively reflect the stress distribution and micro-fracture mechanism in the interi- or of material.
基金Funded by the "11th Five" National Science and Technology Support Project(No.2006BAE03A13)
文摘The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.
基金supported by the Project of National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, China (No. 6142909190207)Shaanxi Key Laboratory of High-performance Precision Forming Technology and Equipment (SKL-HPFTE), China (No. PETE-2019-KF-01)。
文摘High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation process parameters will significantly affect the flow behavior. To precisely control the microstructures, researchers have conducted many studies to analyze the microstructure evolution law and deformation mechanism during hot compression. This review focuses on the microstructure evolution of high strength β titanium alloys during hot deformation, including dynamic recrystallization and dynamic recovery in the single-phase region and the dynamic evolution of the α phase in the two-phase region. Furthermore, the optimal hot processing regions, instability regions,and the relationship between the efficiency of power dissipation and the deformation mechanism in the hot processing map are summarized. Finally, the problems and development direction of using hot processing maps to optimize process parameters are also emphasized.
文摘The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.
文摘Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.
基金the finacial support by National Natural Science Foundation of China (Nos. 51374018 and 51174020)
文摘To systematically investigate the kinetics and formation mechanisms of intragranular ferrite(IGF), isothermal heat treatment in the temperature range of 450℃to 600℃ with holding for 30 s to 300 s, analysis of the corresponding microstructures, and observation of the precipitated particles were conducted in V-N microalloyed 600 MPa high strength rebar steel. The potency of V(C,N) for IGF nucleation was also analyzed statistically. The results show that the dominant microstructure transforms from bainite(B) and acicular ferrite(AF) to grain boundary ferrite(GBF), intragranular polygonal ferrite(IPF), and pearlite(P) as the isothermal temperature increases from 450℃ to 600℃. When the holding time at 600℃ is extended from 30 s to 60 s, 120 s, and 300 s, the GBF content ranges from 6.0vol% to 6.5vol% and the IPF content increases from 0.5vol% to 2.8vol%, 13.1vol%, and 13.5vol%, respectively, because the ferrite transformation preferentially occurs at the grain boundaries and then occurs at the austenite grains. Notably, V(C,N) particles are the most effective nucleation site for the formation of IPF, accounting for 51% of the said formation.
文摘The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.
文摘The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.