期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Highly transparent and super-wettable nanocoatings hybridized with isocyanate-silane modified surfactant for multifunctional applications 被引量:2
1
作者 Man Kwan Law Ying Zhao +5 位作者 Weibin Zhang Rui Wang Mingcheng Shi Yunxiao Zhang Shusheng Chen Jinglei Yang 《Nano Materials Science》 EI CAS CSCD 2022年第2期151-168,共18页
Highly transparent and super-wettable nanocoatings for multifunctional applications with outstanding physical properties are in high demanded.However,such nanocoatings resistant to water invasion and Ultraviolet(UV)we... Highly transparent and super-wettable nanocoatings for multifunctional applications with outstanding physical properties are in high demanded.However,such nanocoatings resistant to water invasion and Ultraviolet(UV)weathering remain a significant challenge.In this work,physically durable coatings based on inorganic nanoparticles(NPs)and an organic segment(isocyanate-silane modified surfactant)have been synthesized via a sol-gel approach.It is noteworthy the isocyanate-silane with-NH-C=O-functional group creates a strong bonding between the highly hydrophilic surfactant and the inorganic NPs.This in-house synthesized organic segment can render the coating long-lasting wetting properties and resist to be washed away by water,while the inorganic NPs can form sturdy covalent bonds with the nano-scale hierarchical structure on the glazing substrate to improve the durability.This nanocoating demonstrates high transparency with superwetting property(water contact angle,WCA=4.4±0.3°),effective de-frosting performance.Water invasion or UV accelerated weathering tests do not significantly affect the self-cleaning performance of nanocoating.Physical properties,including coating adhesion,hardness,Young's modulus,and abrasion resistance are systematically investigated.Interestingly,this clear coating shows prominent infrared shielding property attributed to Antimony-doped tin oxide(Sb-doped SnO_(2))NPs.The developed nanocoating process is easy to scale up for larger areas that require multipurpose self-cleaning functions. 展开更多
关键词 NANOCOATING Sol-gel approach Multifunctionality high transparency Superwetting Durability
下载PDF
High-entropy rare earth stannate ceramics:Acid corrosion resistant radiative cooling materials with high atmospheric transparency window emissivity and high near-infrared solar reflectivity
2
作者 Tao Chen Yanyan He +7 位作者 Yanyu Pan Kaixian Wang Minzhong Huang Liyan Xue Yazhu Li Fan Yang Yanchun Zhou Heng Chen 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第5期630-640,共11页
In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric tra... In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric transparency window(ATW;8–13μm)to advance zero energy consumption radiative cooling technology.To regulate emission and reflection properties,a series of high-entropy rare earth stannate ceramics(HE-RE_(2)Sn_(2)O_(7):(Y_(0.2)La_(0.2)Nd_(0.2)Eu_(0.2)Gd_(0.2))_(2)Sn_(2)O_(7),(Y_(0.2)La_(0.2)Sm_(0.2)Eu_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7),and(Y_(0.2)La_(0.2)Gd_(0.2)Yb_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7))with severe lattice distortion were prepared using a solid phase reaction followed by a pressureless sintering method for the first time.Lattice distortion is accomplished by introducing rare earth elements with different cation radii and mass.The as-synthesized HE-RE_(2)Sn_(2)O_(7)ceramics possess high ATW emissivity(91.38%–95.41%),high NIR solar reflectivity(92.74%–97.62%),low thermal conductivity(1.080–1.619 W·m^(−1)·K^(−1)),and excellent chemical stability.On the one hand,the lattice distortion intensifies the asymmetry of the structural unit to cause a notable alteration in the electric dipole moment,ultimately enlarging the ATW emissivity.On the other hand,by selecting difficult excitation elements,HE-RE_(2)Sn_(2)O_(7),which has a wide band gap(Eg),exhibits high NIR solar reflectivity.Hence,the multi-component design can effectively enhance radiative cooling ability of HE-RE_(2)Sn_(2)O_(7)and provide a novel strategy for developing radiative cooling materials. 展开更多
关键词 radiative cooling materials high-entropy ceramics(HECs) rare earth stannate(RE_(2)Sn_(2)O_(7)) high atmospheric transparency window emissivity high near-infrared(NIR)solar reflectivity
原文传递
Dopant-Tunable Ultrathin Transparent Conductive Oxides for Efficient Energy Conversion Devices
3
作者 Dae Yun Kang Bo-Hyun Kim +5 位作者 Tae Ho Lee Jae Won Shim Sungmin Kim Ha-Jun Sung Kee Joo Chang Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期437-451,共15页
Ultrathin film-based transparent conductive oxides(TCOs)with a broad work function(WF)tunability are highly demanded for e cient energy conversion devices.However,reducing the film thickness below 50 nm is limited due... Ultrathin film-based transparent conductive oxides(TCOs)with a broad work function(WF)tunability are highly demanded for e cient energy conversion devices.However,reducing the film thickness below 50 nm is limited due to rapidly increasing resistance;furthermore,introducing dopants into TCOs such as indium tin oxide(ITO)to reduce the resistance decreases the transparency due to a trade-o between the two quantities.Herein,we demonstrate dopant-tunable ultrathin(≤50 nm)TCOs fabricated via electric field-driven metal implantation(m-TCOs;m=Ni,Ag,and Cu)without com-promising their innate electrical and optical properties.The m-TCOs exhibit a broad WF variation(0.97 eV),high transmittance in the UV to visible range(89–93%at 365 nm),and low sheet resistance(30–60Ωcm-2).Experimental and theoretical analyses show that interstitial metal atoms mainly a ect the change in the WF without substantial losses in optical transparency.The m-ITOs are employed as anode or cathode electrodes for organic light-emitting diodes(LEDs),inorganic UV LEDs,and organic photovoltaics for their universal use,leading to outstanding performances,even without hole injection layer for OLED through the WF-tailored Ni-ITO.These results verify the proposed m-TCOs enable e ective carrier transport and light extraction beyond the limits of traditional TCOs. 展开更多
关键词 Transparent conductive oxide Metal implantation high transparency Low sheet resistance Work function
下载PDF
Modified Triphenylmethane-based Polyimides with Improved Optical,Dielectric and Solubility Properties via Post-Polymerization Modification
4
作者 Yan-Cheng Wu Guo-Tao Huang +8 位作者 Man-Yu Lian Rui Liang Hong-Lin Deng Feng Gan Yang-Fan Zhang Ning-Bo Yi Li-Yong Tian Chun-Ping Ma Yen Wei 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第10期1609-1616,共8页
A family of new triphenylmethane(TPM)-based polyimides(PIs)containing bulky tert-butyldimethylsiloxy(TBS)side-groups(PI-TPMOSis)has been prepared by a post-polymerization modification via a simple silyl ether reaction... A family of new triphenylmethane(TPM)-based polyimides(PIs)containing bulky tert-butyldimethylsiloxy(TBS)side-groups(PI-TPMOSis)has been prepared by a post-polymerization modification via a simple silyl ether reaction of TPM-based PIs containing hydroxyl(OH)groups(PI-TPMOHs).The attachment of TBS side-groups in PI-TPMOSis can be achieved up to 100%,as confirmed by the 1H-NMR and IR spectra.Due to the presence of the TPM structure,PI-TPMOSi films still display the excellent thermal stability with high glass transition temperature(Tg)of 314–351°C and high degradation temperature(Td5%)of 480–501°C.It is quite remarkable that the introduction of TBS side-groups into PI-TPMOSi chains results in more superior optical,dielectric and solubility properties in comparison with the precursor PI-TPMOH films,probably due to the reductions of the packing density and charge-transfer complexes(CTCs)formation.The optical transmittance at 400 nm(T400)of PI-TPMOSi films is significantly increased from 45.3%–68.8%to 75.4%–81.6%of the precursor PI-TPMOH films.The dielectric constant(Dk)and dissipation factor(Df)at 1 MHz of PI-TPMOSi films are reduced from 4.11–4.40 and 0.00159–0.00235 to 2.61–2.92 and 0.00125–0.00171 of the precursor PI-TPMOH films,respectively.Combining the molecular design and simple preparation method,this study provides an effective approach for enhancement of various properties of PI films for microelectronic and photoelectric engineering applications. 展开更多
关键词 Triphenylmethane-based polyimides Post-polymerization modification high Tg high optical transparence Low Dk
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部