Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ...Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum al...The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultra...The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.展开更多
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin...Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.展开更多
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin...In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.展开更多
Vacuum die casting is the optimal method to produce high quality aluminum alloy components.At present,there are still very few systematic studies on vacuum die casting theory and equipment design.On the basis of the e...Vacuum die casting is the optimal method to produce high quality aluminum alloy components.At present,there are still very few systematic studies on vacuum die casting theory and equipment design.On the basis of the existing theories of the vacuum die casting pumping and venting systems,a simplified model is established in this research.The model has an aggregate unit consisted of "vacuum pump + buffer tank" and a cylindrical container(including the shot sleeve,cavity and exhaust channel).The theoretical analysis is carried out between the cavity pressure and the pumping time under different volume models.An auxiliary system for high vacuum die casting is designed based on the above analysis.This system is composed of a vacuum control machine and a new vacuum stop valve.The machine has a human-computer control mode with "programmable logic controller(PLC) + touch screen" and a real-time monitoring function of vacuum degree for buffer tank and die cavity.The vacuum stop valve with the "compressed gas + piston rod + labyrinth groove" structure can realize the function of whole-process vacuum venting.The new system shows great advantages on vacuuming the cavity with a much faster speed by making tests on an existing die casting mold and a 250 t die casting machine.A die cavity pressure less than 10 kPa can be reached within 0.8 s in the experiment and the porosity of castings can be greatly decreased.The systematic studies on vacuum die casting theory and equipment have a great guiding significance for high vacuum die casting,and can also be applied to other high vacuum forming in related theoretical and practical research.展开更多
The effects of high pressure rheo-squeeze casting(HPRC) on the Fe-rich phases(FRPs) and mechanical properties of Al-17 Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration(...The effects of high pressure rheo-squeeze casting(HPRC) on the Fe-rich phases(FRPs) and mechanical properties of Al-17 Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration(UV) and then formed by high-pressure squeeze casting(HPSC). The FRPs in the as-cast HPSC Al-17 Si-1 Fe alloys only contained a long, needle-shaped β-Al5 Fe Si phase at 0 MPa. In addition to the β-Al5 Fe Si phase, the HPSC Al-17 Si-1.5 Fe alloy also contained the plate-shaped δ-Al4 Fe Si2 phase. A fine, block-shaped δ-Al4 Fe Si2 phase was formed in the Al-17 Si-1 Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength(UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17 Si-1 Fe alloy formed by HPSC exceeded that of the Al-17 Si-1.5 Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17 Si-1 Fe alloy formed by HPRC decreased to a value lower than that of the Al-17 Si-1.5 Fe alloy formed in the same manner.展开更多
Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390...Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux(q) and interfacial heat transfer coefficient(h). Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW·m^(-2) and 64.3 kW ·m^(-2)·K^(-1), respectively. The simulation of melt flow in the die reveals that the thinnest(T_1) finger plate could accelerate the melt flow from 50 m·s^(-1) to 110 m·s^(-1). Due to this high velocity, the interfacial heat flux at the end of T_1 could firstly reach a highest value 7.92 MW·m^(-2) among the ends of T_n(n=2,3,4,5). In addition, the q_(max) and h_(max) values of T_2, T_4 and T_5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient(h), the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction(f).展开更多
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry...The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.展开更多
Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning el...Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray computed tomography(XCT) and tensile tester. Results show that porosities including gas porosity and shrinkage porosity could be observed in copper castings. Since the application of vacuum could reduce filling related gas entrapment and facilitate solidification due to the increased heat transfer between metal and die, both number and size of the entrapped gases, as well as shrinkage porosities were significantly reduced in vacuum-assist die castings of pure copper. The porosity fraction decreased from 2.243% to 0.875% compared with that of the conventional die casting. Besides, mechanical properties were improved significantly, i.e., by 15% for ultimate tensile strength and three times for elongation.展开更多
The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC proces...The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.展开更多
IN the past five years the process combination of vacuum hardening, respectively vacuum carburizing with high-pressure gas quenching was successfully introduced to the market, especially in the manufacture of gears. I...IN the past five years the process combination of vacuum hardening, respectively vacuum carburizing with high-pressure gas quenching was successfully introduced to the market, especially in the manufacture of gears. In the meantime furnace concepts for various applications are available to the industry. In the following report three plant varieties are introduced, which differ in process flexibility and throughput. This report also explains criteria for the selection of a furnace in view of the existing application requirements. Besides this a short introduction is given into the vacuum carburizing process and the high-pressure gas quenching technology.展开更多
This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss h...This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.展开更多
The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results sho...The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.展开更多
A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy,was introduced to produce an integrated casting part having a complicated inner shape or requiring under-c...A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy,was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. A salt core, named a fusible core in this paper because the salt core can be easily extracted just as holding at a temperature under a solidus temperature of a casting alloy, was developed and applied to produce a fuel control part for automotive GDI engine in high pressure diecasting machine. A different salt material of a lower melting temperature than that of A1 alloy was mixed with a different ceramic particulate to improve a thermo-physical property of fusible core. The thermo-physical property of the fusible core was measured and a weight faction of the ceramic particulate was optimized. The selected core materials were poured in metallic mold by gravity to produce a fusible core for a fuel control part for automotive GDI engine. The fuel control part, which the fusible core was included inside, was successful to fabricate in a conventional diecasting machine with no melting of fusible core during casting.展开更多
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas...A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses.展开更多
The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work conc...The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.展开更多
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitra...Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51875211 and 51375171)Beijing Natural Science Foundation(No.L223001)+1 种基金Natural Science Foundation of Guangdong Province(No.2023A1515012730)the Program for New Century Excellent Talents in University in China(No.NCET-08-0209).
文摘Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金Project(51775297)supported by the National Natural Science Foundation of ChinaProject(2015M580093)supported by the China Postdoctoral Science Foundation
文摘The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
基金Project(51605342) supported by the National Natural Science Foundation of ChinaProject(2015CFB431) supported by the Natural Science Foundation of Hubei Province,China+1 种基金Project(K201520) supported by the Science Research Foundation of Wuhan Institute of Technology,ChinaProject(2016KA01) supported by the Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety,China
文摘The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.
基金Project(50975093)supported by the National Natural Science Foundation of ChinaProject(08-0209)supported by New Century Excellent Talent in University,Ministry of Education,ChinaProject(2009ZM0283)supported by the Fundamental Research Funds for the Central Universities,China
文摘Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.
基金supported by the National Major Science and Technology Program of China(2012ZX04012011)the National Nature Science Foundation of China(51275269)
文摘In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.
基金supported by Fujian Provincial Natural Science Foundation of China (Grant No.2007J0170)Xiamen Municipal Natural Science Foundation of China (Grant No.3502Z20093034)
文摘Vacuum die casting is the optimal method to produce high quality aluminum alloy components.At present,there are still very few systematic studies on vacuum die casting theory and equipment design.On the basis of the existing theories of the vacuum die casting pumping and venting systems,a simplified model is established in this research.The model has an aggregate unit consisted of "vacuum pump + buffer tank" and a cylindrical container(including the shot sleeve,cavity and exhaust channel).The theoretical analysis is carried out between the cavity pressure and the pumping time under different volume models.An auxiliary system for high vacuum die casting is designed based on the above analysis.This system is composed of a vacuum control machine and a new vacuum stop valve.The machine has a human-computer control mode with "programmable logic controller(PLC) + touch screen" and a real-time monitoring function of vacuum degree for buffer tank and die cavity.The vacuum stop valve with the "compressed gas + piston rod + labyrinth groove" structure can realize the function of whole-process vacuum venting.The new system shows great advantages on vacuuming the cavity with a much faster speed by making tests on an existing die casting mold and a 250 t die casting machine.A die cavity pressure less than 10 kPa can be reached within 0.8 s in the experiment and the porosity of castings can be greatly decreased.The systematic studies on vacuum die casting theory and equipment have a great guiding significance for high vacuum die casting,and can also be applied to other high vacuum forming in related theoretical and practical research.
基金financially supported by the National Natural Science Foundation of China (No. 51605342)the China Postdoctoral Science Foundation (No. 2015M572135)the Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (No. 2016KA01)
文摘The effects of high pressure rheo-squeeze casting(HPRC) on the Fe-rich phases(FRPs) and mechanical properties of Al-17 Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration(UV) and then formed by high-pressure squeeze casting(HPSC). The FRPs in the as-cast HPSC Al-17 Si-1 Fe alloys only contained a long, needle-shaped β-Al5 Fe Si phase at 0 MPa. In addition to the β-Al5 Fe Si phase, the HPSC Al-17 Si-1.5 Fe alloy also contained the plate-shaped δ-Al4 Fe Si2 phase. A fine, block-shaped δ-Al4 Fe Si2 phase was formed in the Al-17 Si-1 Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength(UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17 Si-1 Fe alloy formed by HPSC exceeded that of the Al-17 Si-1.5 Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17 Si-1 Fe alloy formed by HPRC decreased to a value lower than that of the Al-17 Si-1.5 Fe alloy formed in the same manner.
基金financially supported by the class General Financial Grant from the China Postdoctoral Science Foundation(No.2015M580093)the National Nature Science Foundation of China(No.20151301587)the National Major Science and Technology Program of China(No.2012ZX04012011)
文摘Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux(q) and interfacial heat transfer coefficient(h). Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW·m^(-2) and 64.3 kW ·m^(-2)·K^(-1), respectively. The simulation of melt flow in the die reveals that the thinnest(T_1) finger plate could accelerate the melt flow from 50 m·s^(-1) to 110 m·s^(-1). Due to this high velocity, the interfacial heat flux at the end of T_1 could firstly reach a highest value 7.92 MW·m^(-2) among the ends of T_n(n=2,3,4,5). In addition, the q_(max) and h_(max) values of T_2, T_4 and T_5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient(h), the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction(f).
文摘The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.
文摘Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray computed tomography(XCT) and tensile tester. Results show that porosities including gas porosity and shrinkage porosity could be observed in copper castings. Since the application of vacuum could reduce filling related gas entrapment and facilitate solidification due to the increased heat transfer between metal and die, both number and size of the entrapped gases, as well as shrinkage porosities were significantly reduced in vacuum-assist die castings of pure copper. The porosity fraction decreased from 2.243% to 0.875% compared with that of the conventional die casting. Besides, mechanical properties were improved significantly, i.e., by 15% for ultimate tensile strength and three times for elongation.
基金the National Natural Science Foundation of China(No.51805389)the Key R&D Program of Hubei Province,China(No.2021BAA048)+1 种基金the 111 Project(No.B17034)the fund of the Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology(No.XDQCKF2021011).
文摘The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.
文摘IN the past five years the process combination of vacuum hardening, respectively vacuum carburizing with high-pressure gas quenching was successfully introduced to the market, especially in the manufacture of gears. In the meantime furnace concepts for various applications are available to the industry. In the following report three plant varieties are introduced, which differ in process flexibility and throughput. This report also explains criteria for the selection of a furnace in view of the existing application requirements. Besides this a short introduction is given into the vacuum carburizing process and the high-pressure gas quenching technology.
文摘This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.
基金Project (05YB31) supported by the Scientific Research Initial Foundation for Doctor of Shenyang Institute of Aeronautical Engineering,China
文摘The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.
文摘A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy,was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. A salt core, named a fusible core in this paper because the salt core can be easily extracted just as holding at a temperature under a solidus temperature of a casting alloy, was developed and applied to produce a fuel control part for automotive GDI engine in high pressure diecasting machine. A different salt material of a lower melting temperature than that of A1 alloy was mixed with a different ceramic particulate to improve a thermo-physical property of fusible core. The thermo-physical property of the fusible core was measured and a weight faction of the ceramic particulate was optimized. The selected core materials were poured in metallic mold by gravity to produce a fusible core for a fuel control part for automotive GDI engine. The fuel control part, which the fusible core was included inside, was successful to fabricate in a conventional diecasting machine with no melting of fusible core during casting.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50675114) the National Basic Research Program of China (2006CB605208-2) The experiments were conducted at the Tsinghua-TOYO R&D Center of Magnesium and Aluminum Alloys Processing Technology with the help of engineers from the TOYO Machiuery & Metal Co., Ltd.
文摘A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses.
基金financially supported by the Fundamental Research Funds for the Central Universities(WUT:2017IVA036)111 Project(B17034)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2018-003)
文摘The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.
基金supported by the National Basic Research Program of China(2012CB723105)the National Natural Science Foundation of China(20976117)the Technological Innovation Programs of Higher Education Institutions in Shanxi(2013JYT113)
文摘Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.