Using Nd:YAG second harmonic pulse (100 ps), the optical storage properties of two novel polyesters, poly [4'-bis (N, N-oxyethylene) imino-4-nitroazobenzene succinyl] and poly [2'-chloro-4'-bis (N, N-oxyet...Using Nd:YAG second harmonic pulse (100 ps), the optical storage properties of two novel polyesters, poly [4'-bis (N, N-oxyethylene) imino-4-nitroazobenzene succinyl] and poly [2'-chloro-4'-bis (N, N-oxyethylene) imino-4-nitroazobenzene succinyl] have been studied by multiwave mixing. The high-order diffractions of the orientation gratings induced by anisotropy via the reorientation of nitroazobenzene groups and optical information storage with long-term stability have been realized by multiwave mixing in their films. Up to 3rd order forward diffraction was detected in two wave mixing, while up to 4th order backward diffraction was observed in degenerated four wave mixing. The recording mechanism was explained by the trans-cis-trans isomerization cycles of azobenzene groups. The isomerization of these azobenzene groups probably undergoes with inversion mechanism under the experimental conditions. The information recorded in these films has been kept for more than 6 months.展开更多
Six new thermally stable polyesters (4a-f) were synthesized through the solution polycondensation reaction of 2,5-pyridine dicarbonyldichloride (2) with six aromatic diols in N,N'-dimethyl acetamide (DMAc) solu...Six new thermally stable polyesters (4a-f) were synthesized through the solution polycondensation reaction of 2,5-pyridine dicarbonyldichloride (2) with six aromatic diols in N,N'-dimethyl acetamide (DMAc) solution and in the presence of pyridine as a base. The polycondensation reactions produce a series of new polyesters (4a-f) in high yields, and inherent viscosity between 0.30 and 0.55 dL/g. The resulting polyesters were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility test, Fourier transform infrared (FT-IR) spectroscopy and gel permeation chromatography (GPC). C 2009 Khalil Faghihi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Six new polyesters 7a-f were synthesized through the solution polycondensation reaction of diacid chloride 5 with six aromatic diols 6a-f in N,N-dimethyl acetamide(DMAc) as solvent in the presence of pyridine as base....Six new polyesters 7a-f were synthesized through the solution polycondensation reaction of diacid chloride 5 with six aromatic diols 6a-f in N,N-dimethyl acetamide(DMAc) as solvent in the presence of pyridine as base.The polycondensation reaction produced a series of novel polyester containing pyridyl moiety in the main chain in high yields with inherent viscosities between 0.35 and 0.54 dL/g.The resulted polymers were fully characterized by means of FT-IR spectroscopy,elemental analyses,inherent viscosity ...展开更多
In 2008 there are many events taking place in China: tightened currency policy, new labor law and new enterprise income tax law, as well as the Recycling Economic Law, which will directly impact recycling industry. Ho...In 2008 there are many events taking place in China: tightened currency policy, new labor law and new enterprise income tax law, as well as the Recycling Economic Law, which will directly impact recycling industry. How will those changes in policies influence recycling industry in the future?展开更多
The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca...The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.展开更多
文摘Using Nd:YAG second harmonic pulse (100 ps), the optical storage properties of two novel polyesters, poly [4'-bis (N, N-oxyethylene) imino-4-nitroazobenzene succinyl] and poly [2'-chloro-4'-bis (N, N-oxyethylene) imino-4-nitroazobenzene succinyl] have been studied by multiwave mixing. The high-order diffractions of the orientation gratings induced by anisotropy via the reorientation of nitroazobenzene groups and optical information storage with long-term stability have been realized by multiwave mixing in their films. Up to 3rd order forward diffraction was detected in two wave mixing, while up to 4th order backward diffraction was observed in degenerated four wave mixing. The recording mechanism was explained by the trans-cis-trans isomerization cycles of azobenzene groups. The isomerization of these azobenzene groups probably undergoes with inversion mechanism under the experimental conditions. The information recorded in these films has been kept for more than 6 months.
文摘Six new thermally stable polyesters (4a-f) were synthesized through the solution polycondensation reaction of 2,5-pyridine dicarbonyldichloride (2) with six aromatic diols in N,N'-dimethyl acetamide (DMAc) solution and in the presence of pyridine as a base. The polycondensation reactions produce a series of new polyesters (4a-f) in high yields, and inherent viscosity between 0.30 and 0.55 dL/g. The resulting polyesters were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility test, Fourier transform infrared (FT-IR) spectroscopy and gel permeation chromatography (GPC). C 2009 Khalil Faghihi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘Six new polyesters 7a-f were synthesized through the solution polycondensation reaction of diacid chloride 5 with six aromatic diols 6a-f in N,N-dimethyl acetamide(DMAc) as solvent in the presence of pyridine as base.The polycondensation reaction produced a series of novel polyester containing pyridyl moiety in the main chain in high yields with inherent viscosities between 0.35 and 0.54 dL/g.The resulted polymers were fully characterized by means of FT-IR spectroscopy,elemental analyses,inherent viscosity ...
文摘In 2008 there are many events taking place in China: tightened currency policy, new labor law and new enterprise income tax law, as well as the Recycling Economic Law, which will directly impact recycling industry. How will those changes in policies influence recycling industry in the future?
基金supported by the grants(51973027 and 52003044)from the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities(2232023A-05)+4 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004)This work has also been supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216)the Donghua University Distinguished Young Professor Program to Prof.Liming Wangthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2022040)to Xinyang He.
文摘The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.