The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were ...The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study.展开更多
In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina par...In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina particles. The milled powders were used as feedstock to deposit composite coatings on A356-T6 aluminum alloy substrate using high velocity oxy-fuel (HVOF) process. X-ray diffractometry, optical and scanning electron microscopy, microhardness and wear tests were used to characterize the composite powders and coatings. The hardness of composite coatings containing micro and nanosized AI203 were 114.1 ± 5.9 HV and 138.4 ± 6.9 HV, respectively which were higher than those for substrate (79.2 ± 1.1 HV). Nano and microcomposite coatings revealed low friction coefficients and wear rates, which were significantly lower than those obtained for AI356-T6 substrate. Addition of 5 vol.% micro and nanoscaled alumina particles improved the wear resistance by an average of 85% and 91%, respectively. This is mainly caused by the presence of AI203 in matrix and nanocrystalline structure of matrix. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.展开更多
Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change.As a result,an accurate determination of seasonal variation in glacier velocity is very important...Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change.As a result,an accurate determination of seasonal variation in glacier velocity is very important in understanding the annual variation in glacier dynamics.However,few studies of glacier velocity in the High Mountain Asia(HMA)region were done.Along these lines,in this work,based on Sentinel-1 glacier velocity data,the distribution of glacier velocity in the HMA region was plotted and their seasonal variations during 2015-2020 were systematically analysed.The average glacier velocity in the HMA region was 0.053 m/d,and was positively correlated with the glacier area and slope.Glaciers in the Karakoram Mountains had the fastest average flow velocity(0.060 m/d),where the glaciers exhibited the largest average area and average slope.Moreover,glaciers in the GangdisêMountains had the slowest velocity(0.022 m/d)and the smallest average glacier area.The glacier flows were the fastest in spring(0.058 m/d),followed by summer(0.050 m/d),autumn(0.041 m/d),and winter(0.040 m/d).In addition,the glacier flows were the maximum in May,being 1.4 times of the annual average velocity.In some areas,such as the Qilian,Altun,Tibetan Interior,Eastern Kunlun,and Western Kunlun mountains,the peak glacier velocities appeared in June and July.The glacier velocity in the HMA region decreased in midsummer and reached the minimum in December when it was 75%of the annual average.These results highlight the role of meltwater in the seasonal variation in glacier flows in late spring and early summer.The seasonal velocity variation of lake-terminating glaciers was similar to that of land-terminating ones,but the former flowed faster.The velocity difference close to the mass balance line between the lake-and land-terminating glaciers was obviously greater in spring than in other seasons.In summer,the difference between the lake-and land-terminating glaciers at a normalized distance of 0.05-0.40 from the terminus was significantly greater than those of other seasons.The velocity difference between the lake-and land-terminating glaciers is closely related to the variable of ice thickness,and also to the frictional force of the terminal base reduced by proglacial lakes.Thus,it can be concluded that in addition to the variation of the glacier thickness and viscosity,the variation of glacier water input also plays a key role in the seasonal variation of glacier velocity.展开更多
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was u...Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.展开更多
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km ...This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.展开更多
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef...The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.展开更多
In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A compar...In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.展开更多
A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples w...A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.展开更多
To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of ...To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.展开更多
An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(A...An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.展开更多
Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequen...Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequences.Therefore,one investigates the impact resistance of a new type of composite material,Ti/CFRP/Ti sandwich structure,and launches impact tests by using an air gun test system.Then one acquires the critical breakthrough rate of the structure and analyzes the damages.The results show that the main failure mode of the front titanium sheet is shear plugging and brittle fracture of adhesive layer with fiber breakage,while the back titanium sheet is severely ripped.The rear damage is worse than the front one.Compared with traditional CFRP laminates,the critical breakthrough rate of Ti/CFRP/Ti sandwich structure is improved by 69.9% when suffered the impact of a bearing ball with 2mm radius.展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) an...P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) and lower anisotropy. Pressure derivatives of the eclogites range from 0. 22 to 0. 33 km. s-1 GPa-1. Average temperature derivative of the eclogites is - 3. 41×10-4 km. s-1. °C -1. The density and VP of the eclogites imply that there will be two united possibilities related to crust-mantle recycling after the eclogite formed in the deep lithosphere. One is that some eclogites in the deep lithosphere were detached and sunk into deeper mantle due to their denser density. Another is that some eclogites returned to the crust and exposed to the surface.Small amounts (<12%) of eclogites may be still exist in the deep crust beneath Dabieshan based on our calculation.展开更多
In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound c...In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.展开更多
Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were inves...Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30°is more than that of 90°. The erosion resistance of coatings was enhanced uith the inereaase of temperature. Coatings had a better erosion resislance than substrwles. The erosion changed from ductile behariors to brittle behaviors above 450℃ . At high temperature, the erosion resistances were superior to those at low temperwlure and roonl temperwlure. Cowlings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings ; The corrosion losing of cowlings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.展开更多
The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great eff...The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.展开更多
Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of...Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of equal intervals of velocity,producing the velocity spectrum by superposing energy or similarity coefficients.In this method,however,the sensitivity of the semblance spectrum to change of velocity is weak,so the resolution is poor.In this paper,to solve the above deficiencies of conventional velocity analysis,a method for obtaining a high-resolution velocity spectrum based on weighted similarity is proposed.By introducing two weighting functions,the resolution of the similarity spectrum in time and velocity is improved.Numerical examples and real seismic data indicate that the proposed method provides a velocity spectrum with higher resolution than conventional methods and can separate cross reflectors which are aliased in conventional semblance spectrums;at the same time,the method shows good noise-resistibility.展开更多
The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters ...The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters on the heat transfer behaviors of the atomized droplets were analyzed. The results show that the initial cooling rates of different size droplets range from 105 to 107 K/s, thus producing the coating microstructure with the features of rapid solidification. The droplet size, atomization gas pressure and droplet superheat have great influences on the heat transfer behavior of the droplet. The droplet temperature and cooling rate are much sensitive to the droplet sizes, but insensitive to the atomization gas pressure and droplet superheat. It can be predicted that the properties of HVAS coatings will be improved by decreasing droplet size as well as increasing atomization gas pressure and droplet superheat in certain extents.展开更多
This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results ...This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities.The apparatus is capable of producing plate to seismic velocities(44 mm/a to 2.1 m/s for specimens of 40 mm in diameter),using a 22 kW servomotor with a gear/belt system having three velocity ranges.A speed range can be changed by 103 or 106by using five electromagnetic clutches without stopping the motor.Two cam clutches allow fivefold velocity steps,and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage.A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily.In addition to a standard specimen assembly for friction experiments,two pressure vessels were made for pore pressures to 70 MPa;one at room temperature and the other at temperatures to 500 °C.Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities.We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone,located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake.An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock,but no instantaneous response was recognized for the same gouge with roughened sliding surfaces.Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities,and technical improvements for velocity step tests are suggested.展开更多
基金supported by the National 863 projects by the Department of Science and Technology of China (No. 2002AA331080)the Program of Beijing Significant Science and Technology Project (No.020420050021)
文摘The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study.
文摘In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina particles. The milled powders were used as feedstock to deposit composite coatings on A356-T6 aluminum alloy substrate using high velocity oxy-fuel (HVOF) process. X-ray diffractometry, optical and scanning electron microscopy, microhardness and wear tests were used to characterize the composite powders and coatings. The hardness of composite coatings containing micro and nanosized AI203 were 114.1 ± 5.9 HV and 138.4 ± 6.9 HV, respectively which were higher than those for substrate (79.2 ± 1.1 HV). Nano and microcomposite coatings revealed low friction coefficients and wear rates, which were significantly lower than those obtained for AI356-T6 substrate. Addition of 5 vol.% micro and nanoscaled alumina particles improved the wear resistance by an average of 85% and 91%, respectively. This is mainly caused by the presence of AI203 in matrix and nanocrystalline structure of matrix. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.
基金supported by the Major Project on Natural Science Foundation of Universities in Anhui Province (2022AH040111)the National Natural Science Foundation of China (42071085,41701087)。
文摘Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change.As a result,an accurate determination of seasonal variation in glacier velocity is very important in understanding the annual variation in glacier dynamics.However,few studies of glacier velocity in the High Mountain Asia(HMA)region were done.Along these lines,in this work,based on Sentinel-1 glacier velocity data,the distribution of glacier velocity in the HMA region was plotted and their seasonal variations during 2015-2020 were systematically analysed.The average glacier velocity in the HMA region was 0.053 m/d,and was positively correlated with the glacier area and slope.Glaciers in the Karakoram Mountains had the fastest average flow velocity(0.060 m/d),where the glaciers exhibited the largest average area and average slope.Moreover,glaciers in the GangdisêMountains had the slowest velocity(0.022 m/d)and the smallest average glacier area.The glacier flows were the fastest in spring(0.058 m/d),followed by summer(0.050 m/d),autumn(0.041 m/d),and winter(0.040 m/d).In addition,the glacier flows were the maximum in May,being 1.4 times of the annual average velocity.In some areas,such as the Qilian,Altun,Tibetan Interior,Eastern Kunlun,and Western Kunlun mountains,the peak glacier velocities appeared in June and July.The glacier velocity in the HMA region decreased in midsummer and reached the minimum in December when it was 75%of the annual average.These results highlight the role of meltwater in the seasonal variation in glacier flows in late spring and early summer.The seasonal velocity variation of lake-terminating glaciers was similar to that of land-terminating ones,but the former flowed faster.The velocity difference close to the mass balance line between the lake-and land-terminating glaciers was obviously greater in spring than in other seasons.In summer,the difference between the lake-and land-terminating glaciers at a normalized distance of 0.05-0.40 from the terminus was significantly greater than those of other seasons.The velocity difference between the lake-and land-terminating glaciers is closely related to the variable of ice thickness,and also to the frictional force of the terminal base reduced by proglacial lakes.Thus,it can be concluded that in addition to the variation of the glacier thickness and viscosity,the variation of glacier water input also plays a key role in the seasonal variation of glacier velocity.
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
文摘Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.
基金supported by State Key Laboratory of Earthquake Dynamics (projectNo. LED2010A05, LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD)
文摘This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.
基金NationalNatureScienceFoundationofChina (No .5 0 0 0 5 0 2 4)
文摘The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.
基金supported by National 973 Program (No.2006CB605207)MOE Program for Changjiang Scholars and Innovative Research Team in Universityof China (No.I2P407)
文摘A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by National Basic Research Program of China
文摘To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.
文摘An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequences.Therefore,one investigates the impact resistance of a new type of composite material,Ti/CFRP/Ti sandwich structure,and launches impact tests by using an air gun test system.Then one acquires the critical breakthrough rate of the structure and analyzes the damages.The results show that the main failure mode of the front titanium sheet is shear plugging and brittle fracture of adhesive layer with fiber breakage,while the back titanium sheet is severely ripped.The rear damage is worse than the front one.Compared with traditional CFRP laminates,the critical breakthrough rate of Ti/CFRP/Ti sandwich structure is improved by 69.9% when suffered the impact of a bearing ball with 2mm radius.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
文摘P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) and lower anisotropy. Pressure derivatives of the eclogites range from 0. 22 to 0. 33 km. s-1 GPa-1. Average temperature derivative of the eclogites is - 3. 41×10-4 km. s-1. °C -1. The density and VP of the eclogites imply that there will be two united possibilities related to crust-mantle recycling after the eclogite formed in the deep lithosphere. One is that some eclogites in the deep lithosphere were detached and sunk into deeper mantle due to their denser density. Another is that some eclogites returned to the crust and exposed to the surface.Small amounts (<12%) of eclogites may be still exist in the deep crust beneath Dabieshan based on our calculation.
基金supports provided by the National Natural Science Foundation of China (No. 52075198)the National Key Research and Development Program of China (Nos. 2020YFB2008300 and 2020YFB2008304)+1 种基金the State Key Laboratory of High Performance Complex Manufacturing in CSU (No. Kfkt2019-01)the Analytical and Testing Center, HUST.
文摘In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.
基金Founded by the National Natural Science Foundation of China(Grant No.50235030 ,50005024)
文摘Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30°is more than that of 90°. The erosion resistance of coatings was enhanced uith the inereaase of temperature. Coatings had a better erosion resislance than substrwles. The erosion changed from ductile behariors to brittle behaviors above 450℃ . At high temperature, the erosion resistances were superior to those at low temperwlure and roonl temperwlure. Cowlings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings ; The corrosion losing of cowlings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.
基金This work was financially supported by the National Natural Science Foundation of China (No.50235030, 50005024)
文摘The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.
基金funded by the National Key Research and Development Plan (No. 2017YFB0202905)China Petroleum Corporation Technology Management Department “Deep-ultra-deep weak signal enhancement technology based on seismic physical simulation experiments”(No. 2017-5307073-000008-01)。
文摘Seismic wave velocity is one of the most important processing parameters of seismic data,which also determines the accuracy of imaging.The conventional method of velocity analysis involves scanning through a series of equal intervals of velocity,producing the velocity spectrum by superposing energy or similarity coefficients.In this method,however,the sensitivity of the semblance spectrum to change of velocity is weak,so the resolution is poor.In this paper,to solve the above deficiencies of conventional velocity analysis,a method for obtaining a high-resolution velocity spectrum based on weighted similarity is proposed.By introducing two weighting functions,the resolution of the similarity spectrum in time and velocity is improved.Numerical examples and real seismic data indicate that the proposed method provides a velocity spectrum with higher resolution than conventional methods and can separate cross reflectors which are aliased in conventional semblance spectrums;at the same time,the method shows good noise-resistibility.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters on the heat transfer behaviors of the atomized droplets were analyzed. The results show that the initial cooling rates of different size droplets range from 105 to 107 K/s, thus producing the coating microstructure with the features of rapid solidification. The droplet size, atomization gas pressure and droplet superheat have great influences on the heat transfer behavior of the droplet. The droplet temperature and cooling rate are much sensitive to the droplet sizes, but insensitive to the atomization gas pressure and droplet superheat. It can be predicted that the properties of HVAS coatings will be improved by decreasing droplet size as well as increasing atomization gas pressure and droplet superheat in certain extents.
基金supported by State Key Laboratory of Earthquake Dynamics (Project No.LED2014A06 & LED2010A05)
文摘This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities.The apparatus is capable of producing plate to seismic velocities(44 mm/a to 2.1 m/s for specimens of 40 mm in diameter),using a 22 kW servomotor with a gear/belt system having three velocity ranges.A speed range can be changed by 103 or 106by using five electromagnetic clutches without stopping the motor.Two cam clutches allow fivefold velocity steps,and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage.A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily.In addition to a standard specimen assembly for friction experiments,two pressure vessels were made for pore pressures to 70 MPa;one at room temperature and the other at temperatures to 500 °C.Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities.We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone,located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake.An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock,but no instantaneous response was recognized for the same gouge with roughened sliding surfaces.Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities,and technical improvements for velocity step tests are suggested.