Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were inves...Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30°is more than that of 90°. The erosion resistance of coatings was enhanced uith the inereaase of temperature. Coatings had a better erosion resislance than substrwles. The erosion changed from ductile behariors to brittle behaviors above 450℃ . At high temperature, the erosion resistances were superior to those at low temperwlure and roonl temperwlure. Cowlings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings ; The corrosion losing of cowlings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.展开更多
In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A compar...In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.展开更多
A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode. The tr...A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode. The traditional 321 stainless steel coating was also prepared for comparison. Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions. The structure and worn surface of the coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and energy dispersion spectroscopy(EDS). The results show that, except for aluminum phase addition in the 321/Al coating, no other phases are created compared with the 321 coating. However, due to the addition of aluminum, the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior. Under the dry sliding condition, the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating. But under the oil lubricated conditions with or without 32 h oil-dipping pretreatment, the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating, respectively. The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.展开更多
The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters ...The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters on the heat transfer behaviors of the atomized droplets were analyzed. The results show that the initial cooling rates of different size droplets range from 105 to 107 K/s, thus producing the coating microstructure with the features of rapid solidification. The droplet size, atomization gas pressure and droplet superheat have great influences on the heat transfer behavior of the droplet. The droplet temperature and cooling rate are much sensitive to the droplet sizes, but insensitive to the atomization gas pressure and droplet superheat. It can be predicted that the properties of HVAS coatings will be improved by decreasing droplet size as well as increasing atomization gas pressure and droplet superheat in certain extents.展开更多
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room t...Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.展开更多
Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, ...Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, 650 ℃ when their oxidation behaviors were studied. And their oxidation kinetics curves were protracted. Microstructure, microhardness, bond strength and distribution of section elements were investigated by optical microscope(OM), Vickers microhardness instrument, electric tensile test machine and EPMA. Al coatings and Al coatings with seal coat can enhance the oxidation-resistance of substrate under 500 ℃. The latter has the best corrosion resistance. The coatings can't protect the substrate against oxidation above 600 ℃. After a long time corrosion there is enriched oxygen element at interface.展开更多
Cored wires and high velocity arc spraying (HVAS) technique were applied to produce high Al content Zn-Al alloy coatings on low carbon steel substrates. The electrochemical corrosion behaviors of Zn, Al and Zn-Al coat...Cored wires and high velocity arc spraying (HVAS) technique were applied to produce high Al content Zn-Al alloy coatings on low carbon steel substrates. The electrochemical corrosion behaviors of Zn, Al and Zn-Al coatings were studied with potentiodynamic measurement in 5 % NaCl solution. Compared with pure Zn, pure Al and Zn-15Al coatings, Zn-26Al coatings show a higher corrosion resistance in salt solution. The potentiodynamic polarization tests show that the corrosion resistance of Zn-Al coatings increases as Al content is raised. Pure Al coating exhibits different electrochemical behaviors with other coatings. The corrosion initiated at the micro-pores of the coating and the underlying corrosion mechanism is very similar to that of the pitting corrosion.展开更多
High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe cor...High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe corrosion occurs in molten salt corrosion environment. Materials rich in oxides formers, such as chromium and aluminum, are needed to resist corrosion in high-temperature and corrosive environment, but processability of such bulk alloys is very limited. High velocity electric arc spraying (HVAS) technology is adopted to produce coatings with high corrosion resistance. By comparison, NiCr (Ni-45Cr-4Ti) is recommended as a promising alloy coating for the water-wall tubes, which can even resist molten salt corrosion attack. In the study of corrosion mechanism, the modern material analysis methods, such as scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy dispersive spectrometry (EDS), are used. It is found that the corrosion resistances of NiCr and FeCrAI coatings are much better than that of 20g steel, that the NiCr coatings have the best anti-corrosion properties, and that the NiCr coatings have slightly lower pores than FeCrAI coatings.It is testified that corrosion resistance of coatings is mainly determined by chromium content, and the microstructure of a coating is as important as the chemical composition of the material. In addition, the fracture mechanisms of coatings in the cycle of heating and cooling are put forward. The difference of the thermal physical properties between coatings and base metals results in the thermal stress inside the coatings. Consequently, the coatings spall from the base metal.展开更多
The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y all...The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y(80 wt%;microsized)–silicon carbide(SiC)(20 wt%;nano(N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60 wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction,field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20 wt%SiC(N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.展开更多
A diesel engine crankshaft is failed in journal and the dominant failure mechanism is wear.A 6R robot-based automatic high velocity arc spraying system was developed in this study.The remanufacturing process of engine...A diesel engine crankshaft is failed in journal and the dominant failure mechanism is wear.A 6R robot-based automatic high velocity arc spraying system was developed in this study.The remanufacturing process of engine crankshaft was designed based on the newly developed automatic spraying system and the FeAlNbB cored wire.The two spraying way planning were designed.The results of industrial application in miniature show that,both of the main shaft journal and the crank journal of the crankshaft can be deposited of coating in only one procedure using the developed automatic spraying technology,and a reliable quality remanufactured part was obtained.A comparative evaluation shows that the improvement process offers several benefits.Such as,the coating bond strength and spray rates are all highly increased;the remanufactured cost and time are decreased.Furthermore,this technology has several advantages such as energy and material saving,and environmental protecting,a wide application foreground for this technology is therefore performed.展开更多
Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was u...Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.展开更多
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef...The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.展开更多
The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great eff...The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.展开更多
To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of ...To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.展开更多
Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by opti...Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by optical microscopy (OM) and X-ray diffractometry (XRD). High temperature erosion (HTE) tests were performed in an erosion tester at different impact angles. The surface morphologies of the eroded coatings were observed on a field emission scanning electron microscope(FE-SEM). The laminated structure is found on all the prepared coatings with the porosity and oxide fraction in the coatings decreasing with the Al content from 0 to 15% (mass fraction). Sample FA3 with 15% Al, possessing the lowest porosity and oxide fraction, has the best HTE resistance, which demonstrates that Al addition can improve the HTE resistance of the coatings. The erosion rate of sample FA1 exhibits a maximum value at 90° impact angle. The maximum erosion rates of both FA2 and FA3 samples appear in the range of 60°-90° impact angles. Erosion loss of the coatings occurs through brittle breaking, cutting and fatigue spalling.展开更多
The fretting behavior of Zn-Al-Mg-RE coating prepared by high velocity arc spraying was studied for the first time in this paper.All specimens were fretted in air and 3.5%NaCl solution independently.The worn surfaces ...The fretting behavior of Zn-Al-Mg-RE coating prepared by high velocity arc spraying was studied for the first time in this paper.All specimens were fretted in air and 3.5%NaCl solution independently.The worn surfaces of the coating were investigated by scanning electron microscopy and X-ray energy dispersive spectroscopy.Fretting tests have shown that friction coefficient in 3.5%NaCl solution was similar to dry condition for Zn-Al-Mg-RE coating.Study of worn surfaces revealed the main mechanism in dry friction was the oxidative wear;while in 3.5%NaCl solution,the main mechanisms were delamination process and abrasive wear.展开更多
基金Founded by the National Natural Science Foundation of China(Grant No.50235030 ,50005024)
文摘Iron aluminide intermetallic coatings were prepared from Fe-Al/Cr3C2 cored wires using High Velocity Are Spraying ( HVAS ) technology. Erosion and corrosion properties of HVAS sprayed Fe-Al/Cr3C2 coatings were investigated. Results show that the erosion at impingement angle of 30°is more than that of 90°. The erosion resistance of coatings was enhanced uith the inereaase of temperature. Coatings had a better erosion resislance than substrwles. The erosion changed from ductile behariors to brittle behaviors above 450℃ . At high temperature, the erosion resistances were superior to those at low temperwlure and roonl temperwlure. Cowlings had much higher corrosion properties than substrates. The temperature had a little effect on the corrosion resistance of coatings ; The corrosion losing of cowlings increased slowly with the increase of corrosion time. The HVAS-sprayed Fe-Al/Cr3C2 coatings exhibited a high bond strength and hardness.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.
基金Project(50735006) supported by the National Natural Science Foundation of ChinaProject(2006BAF02A19) supported by the National Science and Technology Support Program of China
文摘A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode. The traditional 321 stainless steel coating was also prepared for comparison. Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions. The structure and worn surface of the coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and energy dispersion spectroscopy(EDS). The results show that, except for aluminum phase addition in the 321/Al coating, no other phases are created compared with the 321 coating. However, due to the addition of aluminum, the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior. Under the dry sliding condition, the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating. But under the oil lubricated conditions with or without 32 h oil-dipping pretreatment, the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating, respectively. The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘The heat transfer problem of the atomized droplets during high velocity arc spraying (HVAS) was modeled and solved by a numerical method using a Fe-Al alloy, and the influences of several important process parameters on the heat transfer behaviors of the atomized droplets were analyzed. The results show that the initial cooling rates of different size droplets range from 105 to 107 K/s, thus producing the coating microstructure with the features of rapid solidification. The droplet size, atomization gas pressure and droplet superheat have great influences on the heat transfer behavior of the droplet. The droplet temperature and cooling rate are much sensitive to the droplet sizes, but insensitive to the atomization gas pressure and droplet superheat. It can be predicted that the properties of HVAS coatings will be improved by decreasing droplet size as well as increasing atomization gas pressure and droplet superheat in certain extents.
文摘Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.
文摘Aluminum coatings were sprayed on the substrate of steel Q235 by arc spraying. The test samples of Q235, Al coatings and Al coatings with seal coat were placed in box type electric resistance furnace at 400, 500,600, 650 ℃ when their oxidation behaviors were studied. And their oxidation kinetics curves were protracted. Microstructure, microhardness, bond strength and distribution of section elements were investigated by optical microscope(OM), Vickers microhardness instrument, electric tensile test machine and EPMA. Al coatings and Al coatings with seal coat can enhance the oxidation-resistance of substrate under 500 ℃. The latter has the best corrosion resistance. The coatings can't protect the substrate against oxidation above 600 ℃. After a long time corrosion there is enriched oxygen element at interface.
基金Project(50235030)supported by the National Natural Science Foundation of China
文摘Cored wires and high velocity arc spraying (HVAS) technique were applied to produce high Al content Zn-Al alloy coatings on low carbon steel substrates. The electrochemical corrosion behaviors of Zn, Al and Zn-Al coatings were studied with potentiodynamic measurement in 5 % NaCl solution. Compared with pure Zn, pure Al and Zn-15Al coatings, Zn-26Al coatings show a higher corrosion resistance in salt solution. The potentiodynamic polarization tests show that the corrosion resistance of Zn-Al coatings increases as Al content is raised. Pure Al coating exhibits different electrochemical behaviors with other coatings. The corrosion initiated at the micro-pores of the coating and the underlying corrosion mechanism is very similar to that of the pitting corrosion.
文摘High-temperature corrosion is a serious problem for the water-wall tubes of boilers used in thermal power plants. Oxidation, sulfidation and molten salt corrosion are main corrosion ways.Thereinto, the most severe corrosion occurs in molten salt corrosion environment. Materials rich in oxides formers, such as chromium and aluminum, are needed to resist corrosion in high-temperature and corrosive environment, but processability of such bulk alloys is very limited. High velocity electric arc spraying (HVAS) technology is adopted to produce coatings with high corrosion resistance. By comparison, NiCr (Ni-45Cr-4Ti) is recommended as a promising alloy coating for the water-wall tubes, which can even resist molten salt corrosion attack. In the study of corrosion mechanism, the modern material analysis methods, such as scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy dispersive spectrometry (EDS), are used. It is found that the corrosion resistances of NiCr and FeCrAI coatings are much better than that of 20g steel, that the NiCr coatings have the best anti-corrosion properties, and that the NiCr coatings have slightly lower pores than FeCrAI coatings.It is testified that corrosion resistance of coatings is mainly determined by chromium content, and the microstructure of a coating is as important as the chemical composition of the material. In addition, the fracture mechanisms of coatings in the cycle of heating and cooling are put forward. The difference of the thermal physical properties between coatings and base metals results in the thermal stress inside the coatings. Consequently, the coatings spall from the base metal.
基金DST,New Delhi for their research grant(No.SB/FTP/ETA-435/2012,Dated-10/6/2013)that funded the research and development of the project entitled“Nano-composite Coatings to Control Erosion of Boiler Tubes of Steam Generating Plants.”
文摘The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel(HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y(80 wt%;microsized)–silicon carbide(SiC)(20 wt%;nano(N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60 wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction,field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20 wt%SiC(N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.
基金"973"Project(2011CB013403)National Science and Technology Supporting Project(2011baf11B07)Natural Science Foundation of China(50735006,50971132)
文摘A diesel engine crankshaft is failed in journal and the dominant failure mechanism is wear.A 6R robot-based automatic high velocity arc spraying system was developed in this study.The remanufacturing process of engine crankshaft was designed based on the newly developed automatic spraying system and the FeAlNbB cored wire.The two spraying way planning were designed.The results of industrial application in miniature show that,both of the main shaft journal and the crank journal of the crankshaft can be deposited of coating in only one procedure using the developed automatic spraying technology,and a reliable quality remanufactured part was obtained.A comparative evaluation shows that the improvement process offers several benefits.Such as,the coating bond strength and spray rates are all highly increased;the remanufactured cost and time are decreased.Furthermore,this technology has several advantages such as energy and material saving,and environmental protecting,a wide application foreground for this technology is therefore performed.
文摘Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.
基金NationalNatureScienceFoundationofChina (No .5 0 0 0 5 0 2 4)
文摘The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.
基金This work was financially supported by the National Natural Science Foundation of China (No.50235030, 50005024)
文摘The High Velocity Arc Spraying (HVAS) technology was used to prepare Fe-Al composite coatings by the adding of different elements into cored wires to obtain different Fe-Al coatings. The added compounds do great effect on the properties of the composite coatings. The microstructures and abrasive wear performances of the coatings were assessed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and THT07-135 high temperature wear equipment. It was found that the adding of Cr3C2 can greatly increase the room temperature wear behavior, and Fe-Al/WC coatings have adapting periods at the beginning of wear experiment. With the rise of temperature, the wear resistance of Fe-AI/Cr3C2 coatings becomes bad from room temperature to 250℃, and then stable from 250℃ to 550℃; the wear resistance of Fe-Al/WC becomes well with the rise of temperature. The adding of Cr and Ni can also improve wear performances of Fe-Al composite coatings.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by National Basic Research Program of China
文摘To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.
基金Project(2009C31129) supported by the Science and Technology Department of Zhejiang Province, China
文摘Three types of FeMnCrAl/Cr3C2 coatings with different AI content were deposited on 20# steel substrates by the high velocity arc spraying (HVAS) process. Surface microstructures of the coatings were analyzed by optical microscopy (OM) and X-ray diffractometry (XRD). High temperature erosion (HTE) tests were performed in an erosion tester at different impact angles. The surface morphologies of the eroded coatings were observed on a field emission scanning electron microscope(FE-SEM). The laminated structure is found on all the prepared coatings with the porosity and oxide fraction in the coatings decreasing with the Al content from 0 to 15% (mass fraction). Sample FA3 with 15% Al, possessing the lowest porosity and oxide fraction, has the best HTE resistance, which demonstrates that Al addition can improve the HTE resistance of the coatings. The erosion rate of sample FA1 exhibits a maximum value at 90° impact angle. The maximum erosion rates of both FA2 and FA3 samples appear in the range of 60°-90° impact angles. Erosion loss of the coatings occurs through brittle breaking, cutting and fatigue spalling.
文摘The fretting behavior of Zn-Al-Mg-RE coating prepared by high velocity arc spraying was studied for the first time in this paper.All specimens were fretted in air and 3.5%NaCl solution independently.The worn surfaces of the coating were investigated by scanning electron microscopy and X-ray energy dispersive spectroscopy.Fretting tests have shown that friction coefficient in 3.5%NaCl solution was similar to dry condition for Zn-Al-Mg-RE coating.Study of worn surfaces revealed the main mechanism in dry friction was the oxidative wear;while in 3.5%NaCl solution,the main mechanisms were delamination process and abrasive wear.