期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Molybdenum based amorphous and nanocrystalline coatings prepared by high velocity oxy-fuel spraying 被引量:3
1
作者 Fan, Zishuan Yu, Hongying Wang, Xudong 《Rare Metals》 SCIE EI CAS CSCD 2012年第4期355-361,共7页
The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were ... The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study. 展开更多
关键词 molybdenum based alloy coating amorphous and nanocrystalline phases hardness and tribology anealling high velocity oxy-fuel spraying
下载PDF
Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment 被引量:5
2
作者 Kuzhipadath Jithesh Moganraj Arivarasu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期649-659,共11页
An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(A... An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions. 展开更多
关键词 L605 alloy hot corrosion air plasma spray high velocity OXYGEN FUEL CROSS-SECTIONAL analysis
下载PDF
Tribological properties of high velocity arc sprayed Fe-Al based composite coatings at elevated temperature
3
作者 ZHANG Wei ZHANG Shu XU Wei-pu ZU Zi-xin XU Bin-shi 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期379-382,共4页
Fe-Al based intermetallic composite coatings were in-situ synthesized using Fe-Al/Cr3C2 or Fe-Al/WC cored wires and high velocity are spraying (HVAS) technology. The tribological properties of the Fe-Al based intermet... Fe-Al based intermetallic composite coatings were in-situ synthesized using Fe-Al/Cr3C2 or Fe-Al/WC cored wires and high velocity are spraying (HVAS) technology. The tribological properties of the Fe-Al based intermetallic composite coatings were investigated using a ball-on-disc tribotester from room temperature to 650 ℃. The results show that the coatings have relatively high bond strength and micro-hardness. The tribological properties of Fe-Al/Cr3C2 and Fe-Al/WC composite coatings were further analyzed and compared. Low and stable wear rates of the Fe-Al based intermetallic composite coatings were indicated from room temperature to 650 ℃. The excellent wear resistance of the composite coatings in high temperature was discussed. 展开更多
关键词 high velocity arc spray (HVAS) composite coating TRIBOLOGY
下载PDF
Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF 被引量:18
4
作者 丁彰雄 陈伟 王群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2231-2236,共6页
Conventional,submicron and multimodal WC-12Co cermet coatings were deposited by high velocity oxy-fuel(HVOF).The microhardness and microstructure of the coatings were compared,and the resistance of the coatings to c... Conventional,submicron and multimodal WC-12Co cermet coatings were deposited by high velocity oxy-fuel(HVOF).The microhardness and microstructure of the coatings were compared,and the resistance of the coatings to cavitation erosion was studied by ultrasonic vibration cavitation equipment.Cavitation pits and craters were observed by SEM and cavitation mechanisms were explored.The results show that the microstructures of submicron and multimodal WC-12Co coatings prepared by HVOF are dense with little porosity,and their microhardness values are obviously higher than that of the conventional WC-12Co coating.The average microhardness of multimodal WC-12Co coating reaches nearly HV1500,which is much higher than that of the conventional one.As well,it is found that the multimodal WC-12Co coating exhibits the best cavitation erosion resistance among the three coatings,the erosion rate is approximately 40% that of the conventional coating,and the cavitation erosion resistance of multimodal WC-12Co coating is enhanced by above 150% in comparison with the conventional coating. 展开更多
关键词 cavitation erosion WC-12Co coating high velocity oxy-fuel MULTIMODAL
下载PDF
Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings 被引量:10
5
作者 S.Vignesh K.Shanmugam +1 位作者 V.Balasubramanian K.Sridhar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期101-110,共10页
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor... Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness. 展开更多
关键词 high velocity OXY fuel spray IRON BASED AMORPHOUS metallic coating Micro-hardness POROSITY
下载PDF
Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating 被引量:10
6
作者 Xiang DING Xu-dong CHENG +3 位作者 Xiang YU Chao LI Cheng-qing YUAN Zhang-xiong DING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期487-494,共8页
A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness an... A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness and cavitation erosion resistance of the multi-dimensional coating were investigated in comparison with the bimodal and nanostructured WC?10Co4Cr coatings.Moreover,the cavitation erosion behavior and mechanism of the multi-dimensional coating were explored.Results show that HVOF sprayed multi-dimensional WC-10Co4Cr coating possesses low porosity(≤0.32%)and high fracture toughness without obvious nano WC decarburization during spraying.Furthermore,it is discovered that the multi-dimensional WC-10Co4Cr coating exhibits the best cavitation erosion resistance which is enhanced by approximately 28%and 34%,respectively,compared with the nanostructured and bimodal coatings in fresh water.The superior cavitation resistance of multi-dimensional WC-10Co4Cr coating may originate from the unique micro?nano structure and excellent properties,which can effectively obstruct the formation and propagation of cavitation erosion cracks. 展开更多
关键词 WC-10Co4Cr cavitation erosion multi-dimensional coating high velocity oxy-fuel(HVOF)spraying MICROSTRUCTURE
下载PDF
Effect of flame conditions on abrasive wear performance of HVOF sprayed nanostructured WC-12Co coatings 被引量:5
7
作者 WANG Yu-yue LI Chang-jiu MA Jian YANG Guan-jun 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期72-76,共5页
Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigate... Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix. 展开更多
关键词 high velocity oxy-fuel sprayING nanostructure abrasive wear PERFORMANCE WC-CO coating
下载PDF
Development of Al356e-Al_2O_3 Nanocomposite Coatings by High Velocity Oxy-fuel Technique 被引量:5
8
作者 Y.Mazaheri F.Karimzadeh M.H.Enayati 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第9期813-820,共8页
In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina par... In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina particles. The milled powders were used as feedstock to deposit composite coatings on A356-T6 aluminum alloy substrate using high velocity oxy-fuel (HVOF) process. X-ray diffractometry, optical and scanning electron microscopy, microhardness and wear tests were used to characterize the composite powders and coatings. The hardness of composite coatings containing micro and nanosized AI203 were 114.1 ± 5.9 HV and 138.4 ± 6.9 HV, respectively which were higher than those for substrate (79.2 ± 1.1 HV). Nano and microcomposite coatings revealed low friction coefficients and wear rates, which were significantly lower than those obtained for AI356-T6 substrate. Addition of 5 vol.% micro and nanoscaled alumina particles improved the wear resistance by an average of 85% and 91%, respectively. This is mainly caused by the presence of AI203 in matrix and nanocrystalline structure of matrix. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens. 展开更多
关键词 AI356-AI203 nanocomposite Composite coatings Mechanical milling high velocity oxy-fuel (HVOF) WEAR
原文传递
Effect of thermal cycle on Ni-Cr based nanostructured thermal spray coating in boiler tubes 被引量:2
9
作者 V.SENTHILKUMAR B.THIYAGARAJAN +1 位作者 M.DURAISELVAM K.KARTHICK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1533-1542,共10页
Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline ... Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline powders were used to coat carbon steel tubes using high velocity oxygen fuel(HVOF) thermal spraying process. The characterization of the feedstock powder and HVOF coated substrates was performed using optical microscope, X-ray diffractometer(XRD), scanning electron microscope(SEM), high resolution transmission electron microscope(HR-TEM), energy dispersive spectrometer(EDS) and microhardness tests. The coated and uncoated samples were subjected to different thermal cycles and characterized for their phase changes, metallurgical changes and microhardness variations. Ni-Cr nanostructured coated samples exhibited higher mechanical and metallurgical properties compared to their conventionally coated counter parts. The results showed that the nanostructured coating possessed a more uniform and denser microstructure than the conventional coating. 展开更多
关键词 NANOSTRUCTURE coating feedstock powder thermal spray boiler tubes high velocity oxygen fuel
下载PDF
Effect of arc sprayed coatings on tensile properties of a type 316 steel 被引量:1
10
作者 LIU Gui-min MA Li-li K.J.Kurzydlowski 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期95-99,共5页
The effect of Al- and AlSiRE-coatings obtained by arc spray (AS) and high velocity arc spray (HVAS) technologies, on the tensile properties of type 316 steel specimens strained at elevated temperatures in air and vacu... The effect of Al- and AlSiRE-coatings obtained by arc spray (AS) and high velocity arc spray (HVAS) technologies, on the tensile properties of type 316 steel specimens strained at elevated temperatures in air and vacuum has been systematically investigated. It is found that both temperature and environment play an important role in determining the mechanical properties of the coated 316 steel specimens strained at elevated temperatures. And the quantitative changes of surface roughness of coatings before and after straining correspond to the mechanical properties of the 316 steel substrate. 展开更多
关键词 TYPE 316 STEEL ARC spray high velocity ARC spray coating TENSILE property
下载PDF
Microstructures and properties of submicron structural WC-12Co coatings deposited by HVOF 被引量:6
11
作者 叶福兴 崔崇 +2 位作者 杨雪 王惜宝 中田一博 《China Welding》 EI CAS 2011年第4期22-27,共6页
In this study, WC-Co powder with WC submicron grain size of 0. 7 - 0. 9μm was used as feedstock powder to deposit wear resistant coating by home-made T J-9000 HVOF system. The deposition efficiency of the feedstock p... In this study, WC-Co powder with WC submicron grain size of 0. 7 - 0. 9μm was used as feedstock powder to deposit wear resistant coating by home-made T J-9000 HVOF system. The deposition efficiency of the feedstock powder was examined. Influences of the High Velocity Oxy-Fuel (HVOF) spraying parameters on the microstructures, phase compositions, microhardness, and wear resistance of sprayed coatings were investigated. The deposition efficiency of the feedstock powder was very high, and reached to 58%. The sprayed coatings were very dense, and their porosities were lower than 1% and could be lowered than 0. 42% with optimal spraying parameters. According to the X-ray Diffraction ( XRD ) analysis, the phase compositions of the sprayed coatings consisted of WC, Co, W2 C, and Co6 W6 C. W appeared at high flame power. The average microhardness of the coating was 1 100 HVo 1 and had reversely linear relationship with the porosity of coatings. The weight loss of the counter wear ring GCrl5 was 20 times than that of the sprayed WC-Co coating. At the load of 15 kg and rotational speed of 200 r/min of GCr15 counter wear ring, the friction coefficient was 0. 68 in the dry wear conditions. It was concluded that the sprayed submicron structural WC-12Co coating had good wear resistance. 展开更多
关键词 high velocity oxy-fuel spraying submicron WC mierohardness porosity wear resistance
下载PDF
WC基涂层材料和制备工艺对其组织结构与性能的影响 被引量:8
12
作者 石琎 丁翔 +3 位作者 胡一鸣 丁彰雄 肖俊钧 王韶毅 《热喷涂技术》 2015年第2期39-45,共7页
本文采用超音速火焰(HVOF)喷涂工艺制备了二种微米结构WC-10Co-4Cr及一种纳米结构WC-12Co金属陶瓷复合涂层;采用SEM、XRD等分析了涂层的组织结构;测量了涂层的显微硬度、孔隙率及开裂韧性;采用超声振动空蚀装置研究了涂层的抗空蚀性能,... 本文采用超音速火焰(HVOF)喷涂工艺制备了二种微米结构WC-10Co-4Cr及一种纳米结构WC-12Co金属陶瓷复合涂层;采用SEM、XRD等分析了涂层的组织结构;测量了涂层的显微硬度、孔隙率及开裂韧性;采用超声振动空蚀装置研究了涂层的抗空蚀性能,探讨了涂层空蚀机理。结果表明:由燃油型HVOF工艺制备的纳米WC-12Co涂层孔隙率最低,组织最细小,开裂韧性明显高于燃油型和燃气型HVOF工艺制备的微米WC-10Co-4Cr涂层;燃油型HVOF工艺制备的微米结构WC-10Co-4Cr涂层显示了最优异的抗空蚀性能,空蚀率仅为纳米WC-12Co涂层的1/3左右。 展开更多
关键词 WC基涂层 制备工艺 组织结构 涂层性能 超音速火焰喷涂(HVOF) high velocity oxy-fuel spray(HVOF)
下载PDF
Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior
13
作者 B. Saeedi A. Sabour +1 位作者 A. Ebadi A.M. Khoddami 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期499-507,共9页
The properties of two different types of thermal barrier coatings (TBCs) were compared to improve the surface characteristics on high temperature components. These TBCs consisted of a duplex TBC and a five-layered f... The properties of two different types of thermal barrier coatings (TBCs) were compared to improve the surface characteristics on high temperature components. These TBCs consisted of a duplex TBC and a five-layered functionally graded TBC. NiCrAIY bond coats were deposited on a number of Inconel-738LC specimens using high velocity oxy-fuel spraying (HVOF) technique. For duplex coating, a group of these specimens were coated with yttria stabilized zirconia (YSZ) using plasma spray technique. Functionally graded NiCrAIY/YSZ coatings were fabricated by plasma spray using co-injection of the two different powders in a single plasma torch. The amount of zirconia in functionally graded coatings were gradually increased from 30 to 100 vol. pct. Microstructural changes, thermally grown oxide (TGO) layer growth and damage initiation of the coatings were investigated as a function of isothermal oxidation test at 970℃. As a complementary test, the performance of the fabricated coatings by the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100℃. Also the strength of the adhesive coatings of the substrate was also measured. Microstructural characterization was analyzed by scanning electron microscopy (SEM) and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD (X-ray diffraction) and EDS (energy dispersive spectrometer). The results showed that microstructure and compositions gradually varied in the functionally graded coatings. By comparison of duplex and functionally graded TBCs oxidation behavior (duplex failure after 1700 h and funcitionally graded TECs failure after 2000 h), thermal shock test and adhesion strength of the coatings, the functionally graded TBC had better performance and more durability. 展开更多
关键词 Thermal barrier coatings (TBCs) Isothermal oxidation Functionally graded TBC Thermally grown oxide Bond strength high velocity oxy-fuel spraying
下载PDF
Structural and photocatalytic characteristics of TiO_(2) coatings produced by various thermal spray techniques 被引量:2
14
作者 Pavel CTIBOR Vaclav STENGL Zdenek PALA 《Journal of Advanced Ceramics》 SCIE CAS 2013年第3期218-226,共9页
Titanium dioxide(TiO_(2))was elaborated by four different thermal spray techniques-(i)plasma spraying using a water-stabilized torch,(ii)plasma spraying using a gas-stabilized torch,(iii)high velocity oxy-fuel gun,and... Titanium dioxide(TiO_(2))was elaborated by four different thermal spray techniques-(i)plasma spraying using a water-stabilized torch,(ii)plasma spraying using a gas-stabilized torch,(iii)high velocity oxy-fuel gun,and(iv)oxy-acetylene flame.The porosity of the coatings was studied by optical microscopy,nano-structural features by scanning electron microscopy(SEM),phase composition by X-ray diffraction(XRD);the microhardness,surface roughness and wear resistance were evaluated.The diffuse reflectance was measured by ultra-violet/visible/near-infrared(UV/Vis/NIR)scanning spectrophotometer.The kinetics of photocatalytic degradation of gaseous acetone was measured under a UV lamp with 365 nm wavelength.After all the applied spray processes,the transformation of anatase phase from the initial powders to rutile phase in the coatings occurred.In spite of this transformation,all the coatings exhibited certain photocatalytic activity,which correlated well with their band gap energy calculated from reflectivity.All the coatings offer relatively good mechanical properties and can serve as robust photocatalysts. 展开更多
关键词 plasma spraying high velocity oxy-fuel(HVOF)spraying flame spraying titanium dioxide(TiO_(2)) photocatalysis band gap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部