A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness an...A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness and cavitation erosion resistance of the multi-dimensional coating were investigated in comparison with the bimodal and nanostructured WC?10Co4Cr coatings.Moreover,the cavitation erosion behavior and mechanism of the multi-dimensional coating were explored.Results show that HVOF sprayed multi-dimensional WC-10Co4Cr coating possesses low porosity(≤0.32%)and high fracture toughness without obvious nano WC decarburization during spraying.Furthermore,it is discovered that the multi-dimensional WC-10Co4Cr coating exhibits the best cavitation erosion resistance which is enhanced by approximately 28%and 34%,respectively,compared with the nanostructured and bimodal coatings in fresh water.The superior cavitation resistance of multi-dimensional WC-10Co4Cr coating may originate from the unique micro?nano structure and excellent properties,which can effectively obstruct the formation and propagation of cavitation erosion cracks.展开更多
In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina par...In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina particles. The milled powders were used as feedstock to deposit composite coatings on A356-T6 aluminum alloy substrate using high velocity oxy-fuel (HVOF) process. X-ray diffractometry, optical and scanning electron microscopy, microhardness and wear tests were used to characterize the composite powders and coatings. The hardness of composite coatings containing micro and nanosized AI203 were 114.1 ± 5.9 HV and 138.4 ± 6.9 HV, respectively which were higher than those for substrate (79.2 ± 1.1 HV). Nano and microcomposite coatings revealed low friction coefficients and wear rates, which were significantly lower than those obtained for AI356-T6 substrate. Addition of 5 vol.% micro and nanoscaled alumina particles improved the wear resistance by an average of 85% and 91%, respectively. This is mainly caused by the presence of AI203 in matrix and nanocrystalline structure of matrix. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.展开更多
Titanium dioxide(TiO_(2))was elaborated by four different thermal spray techniques-(i)plasma spraying using a water-stabilized torch,(ii)plasma spraying using a gas-stabilized torch,(iii)high velocity oxy-fuel gun,and...Titanium dioxide(TiO_(2))was elaborated by four different thermal spray techniques-(i)plasma spraying using a water-stabilized torch,(ii)plasma spraying using a gas-stabilized torch,(iii)high velocity oxy-fuel gun,and(iv)oxy-acetylene flame.The porosity of the coatings was studied by optical microscopy,nano-structural features by scanning electron microscopy(SEM),phase composition by X-ray diffraction(XRD);the microhardness,surface roughness and wear resistance were evaluated.The diffuse reflectance was measured by ultra-violet/visible/near-infrared(UV/Vis/NIR)scanning spectrophotometer.The kinetics of photocatalytic degradation of gaseous acetone was measured under a UV lamp with 365 nm wavelength.After all the applied spray processes,the transformation of anatase phase from the initial powders to rutile phase in the coatings occurred.In spite of this transformation,all the coatings exhibited certain photocatalytic activity,which correlated well with their band gap energy calculated from reflectivity.All the coatings offer relatively good mechanical properties and can serve as robust photocatalysts.展开更多
基金Projects(51422507,51379168)supported by the National Natural Science Foundation of China
文摘A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness and cavitation erosion resistance of the multi-dimensional coating were investigated in comparison with the bimodal and nanostructured WC?10Co4Cr coatings.Moreover,the cavitation erosion behavior and mechanism of the multi-dimensional coating were explored.Results show that HVOF sprayed multi-dimensional WC-10Co4Cr coating possesses low porosity(≤0.32%)and high fracture toughness without obvious nano WC decarburization during spraying.Furthermore,it is discovered that the multi-dimensional WC-10Co4Cr coating exhibits the best cavitation erosion resistance which is enhanced by approximately 28%and 34%,respectively,compared with the nanostructured and bimodal coatings in fresh water.The superior cavitation resistance of multi-dimensional WC-10Co4Cr coating may originate from the unique micro?nano structure and excellent properties,which can effectively obstruct the formation and propagation of cavitation erosion cracks.
文摘In this research, development of AI356-AI203 nanocomposite coatings has been investigated. AI356-AI203 composite powders were prepared by mechanical milling of AI356 powder and 5 vol.% micro and nanoscaled alumina particles. The milled powders were used as feedstock to deposit composite coatings on A356-T6 aluminum alloy substrate using high velocity oxy-fuel (HVOF) process. X-ray diffractometry, optical and scanning electron microscopy, microhardness and wear tests were used to characterize the composite powders and coatings. The hardness of composite coatings containing micro and nanosized AI203 were 114.1 ± 5.9 HV and 138.4 ± 6.9 HV, respectively which were higher than those for substrate (79.2 ± 1.1 HV). Nano and microcomposite coatings revealed low friction coefficients and wear rates, which were significantly lower than those obtained for AI356-T6 substrate. Addition of 5 vol.% micro and nanoscaled alumina particles improved the wear resistance by an average of 85% and 91%, respectively. This is mainly caused by the presence of AI203 in matrix and nanocrystalline structure of matrix. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.
基金This work was supported by the Czech Science Foundation under Project P108/12/1872.
文摘Titanium dioxide(TiO_(2))was elaborated by four different thermal spray techniques-(i)plasma spraying using a water-stabilized torch,(ii)plasma spraying using a gas-stabilized torch,(iii)high velocity oxy-fuel gun,and(iv)oxy-acetylene flame.The porosity of the coatings was studied by optical microscopy,nano-structural features by scanning electron microscopy(SEM),phase composition by X-ray diffraction(XRD);the microhardness,surface roughness and wear resistance were evaluated.The diffuse reflectance was measured by ultra-violet/visible/near-infrared(UV/Vis/NIR)scanning spectrophotometer.The kinetics of photocatalytic degradation of gaseous acetone was measured under a UV lamp with 365 nm wavelength.After all the applied spray processes,the transformation of anatase phase from the initial powders to rutile phase in the coatings occurred.In spite of this transformation,all the coatings exhibited certain photocatalytic activity,which correlated well with their band gap energy calculated from reflectivity.All the coatings offer relatively good mechanical properties and can serve as robust photocatalysts.