期刊文献+
共找到19,628篇文章
< 1 2 250 >
每页显示 20 50 100
An effective'salt in dimethyl sulfoxide/water'electrolyte enables high-voltage supercapacitor operated at-50℃
1
作者 Yingbin Liu Chang Yu +5 位作者 Xuedan Song Siyi Hou Shuqin Lan Jinhe Yu Yuanyang Xie Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期361-367,I0009,共8页
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo... Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors. 展开更多
关键词 Dimethyl sulfoxide CO-SOLVENT high voltage Low temperature SUPERCAPACITORS
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes
2
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery high voltage Electrolyte additive Solid electrolyte
下载PDF
Analysis of multiple-faults of high-voltage circuit breakers based on non-negative matrix decomposition
3
作者 Yongrong Zhou Zhaoxing Ma +1 位作者 Hao Chen Ruihua Wang 《Global Energy Interconnection》 EI CSCD 2024年第2期179-189,共11页
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul... High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers. 展开更多
关键词 high voltage circuit breaker Signal separation MONITOR Multiple faults Power system
下载PDF
Novel high-voltage cathode for aqueous zinc ion batteries:Porous K_(0.5)VOPO_(4)·1.5H_(2)O with reversible solid-solution intercalation and conversion storage mechanism
4
作者 Liyu Wang Mingliang Zhao +9 位作者 Xiaoyu Zhang Menghua Wu Yu Zong Yu Chen Xinliang Huang Mingjie Xing Xin Ning Wen Wen Daming Zhu Xiaochuan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期71-78,I0003,共9页
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for... Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode. 展开更多
关键词 Aqueous zinc ion battery CATHODE Porous material high voltage platform In-situ synchrotron X-ray diffraction
下载PDF
ANovel Non-Isolated Cubic DC-DC Converter with High Voltage Gain for Renewable Energy Power Generation System
5
作者 Qin Yao Yida Zeng Qingui Jia 《Energy Engineering》 EI 2024年第1期221-241,共21页
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec... In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems. 展开更多
关键词 Cubic DC-DC converter high voltage gain low device stress high efficiency renewable energy
下载PDF
Boosting High-Voltage Dynamics Towards High-Energy-Density Lithium-Ion Capacitors 被引量:2
6
作者 Junfeng Huang Xin Lu +9 位作者 Teng Sun Daiyao Yu Zhong Xu Yanting Xie Xinglin Jiang Yongbin Wang Shenglong Wang Xiong Zhang Weiqing Yang Haitao Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期211-217,共7页
Lithium-ion capacitors(LICs)are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.However,capacity lopsidedness ... Lithium-ion capacitors(LICs)are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.However,capacity lopsidedness and low output voltage greatly hinder the realization of high-energy-density LICs.Herein,a strategy of balancing capacity towards fastest dynamics is proposed to enable high-voltage LICs.Through electrochemical prelithiation of Nb_(2)C to be 1.1 V with 165 mAh g^(-1),Nb_(2)C//LiFePO_(4) LICs show a broadened potential window from 3.0 to 4.2 V and an according high energy density of 420 Wh kg^(-1).Moreover,the underlying mechanism between prelithiation and high voltage is disclosed by electrochemical dynamic analysis.Prelithiation declines the Nb_(2)C anode potential that facilitates electron transmission in the interlayer of two-dimensional Nb_(2)C MXene.This effect induces small drive force for Li^(+)ions deposition and hence weakens the repulsive force from adsorbed ions on the electrode surface.Benefiting from even more Li^(+)ions deposition,a higher voltage is eventually delivered.In addition,prelithiation significantly increases Coulomb efficiency of the 1st cycle from 74%to 90%,which is crucial to commercial application of LICs. 展开更多
关键词 electrochemical dynamics high voltage lithium-ion capacitors Nb2C MXene prelithiation
下载PDF
High-Voltage Aqueous Zinc Batteries Achieved by Tri-functional Metallic Bipolar Electrodes 被引量:1
7
作者 Chang Liu Xiaowei Chi +1 位作者 Cheng Yang Yu Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期360-367,共8页
Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work... Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work proposes a unique approach to increase the voltages of aqueous zinc batteries by using tri-functional metallic bipolar electrode with good electrochemical activity and ultrahigh electronic conductivity,which not only participates in redox reactions,but also functions as an electrical highway for charge transport.Furthermore,bipolar electrode can replace expensive ion selective membrane to separate electrolytes with different pH;thus,redox couples with higher potential in acid condition and Zn=Zn(OH)^(2-)_(4) couple with lower potential in alkaline condition can be employed together,leading to high voltages of aqueous zinc batteries.Herein,two types of metallic bipolar electrodes of Cu and Ag are utilized based on three kinds of aqueous zinc batteries:Zn–MnO_(2),Zn–I_(2),and Zn–Br_(2).The voltage of aqueous Zn–MnO_(2) battery is raised to 1.84 V by employing one Cu bipolar electrode,which shows no capacity attenuation after 3500 cycles.Moreover,the other Ag bipolar electrode can be adopted to successfully construct Zn–I_(2) and Zn–Br_(2) batteries exhibiting much higher voltages of 2.44 and 2.67 V,which also show no obvious capacity degradation for 1000 and 800 cycles,representing decent cycle stability.Since bipolar electrode can be applied in a large family of aqueous batteries,this work offers an elaborate high-voltage concept based on tri-functional metallic bipolar electrode as a model system to open a door to explore high-voltage aqueous batteries. 展开更多
关键词 aqueous zinc battery high voltage metallic bipolar electrode
下载PDF
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors
8
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 Gel polymer electrolyte UV cross-linking Energy density high voltage window
下载PDF
Unveiling and Alleviating Chemical“Crosstalk”of Succinonitrile Molecules in Hierarchical Electrolyte for High-Voltage Solid-State Lithium Metal Batteries
9
作者 Fang Fu Ying Liu +4 位作者 Chen Sun Lina Cong Yulong Liu Liqun Sun Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期107-116,共10页
Succinonitrile-based plastic crystal electrolytes have emerged for high-energy-density Li metal batteries in terms of their superior ambient ionic conductivity,low flammability,and benign compatibility with high volta... Succinonitrile-based plastic crystal electrolytes have emerged for high-energy-density Li metal batteries in terms of their superior ambient ionic conductivity,low flammability,and benign compatibility with high voltage cathode,but are hampered by inherent instabilities toward Li anodes.Constructing hierarchical solid electrolytes structure is a fundamental approach to protect Li anode from succinonitrile attacks,with succinonitrile-based oxidation-resistance layer facing high voltage cathode and reduction-tolerant layer contacting Li anode.However,free succinonitrile molecules in succinonitrile-based electrolyte layer can diffuse across the electrolyte/electrolyte interface and further reach Li anode surface during the battery cycle.This chemical“crosstalk”cause reduction-tolerant electrolyte layer to fail to protect the Li anode from the attacks of free succinonitrile molecules.Nano Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)is introduced creatively into succinonitrile-based electrolyte layer.By taking advantage of the complexation between La atoms in Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)and N atoms in succinonitrile,the free succinonitrile molecules are successfully immobilized in succinonitrile-based electrolyte layer.The resulting low resistance and highly durable solid electrolyte interphase and cathode electrolyte interphase endow NCM622||Li batteries with remarkable cycle stability.Our research provides a new idea for the real application of plastic crystal electrolytes in high voltage solid-state lithium metal batteries. 展开更多
关键词 hierarchical solid electrolytes high voltage interface lithium metal plastic crystal
下载PDF
Manipulating Zn^(2+)solvation environment in poly(propylene glycol)-based aqueous Li^(+)/Zn^(2+)electrolytes for high-voltage hybrid ion batteries
10
作者 Hang Lu Sheng Zheng +2 位作者 Lu Wei Xiaodong Zhang Xin Guo 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期125-136,共12页
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en... Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries. 展开更多
关键词 high voltage aqueous electrolyte hybrid ion battery molecular interaction poly(propylene glycol) zinc metal anode
下载PDF
Synthesis and electrochemical performance of La_(2)CuO_(4)as a promising coating material for high voltage Li-rich layered oxide cathodes
11
作者 郭福亮 卢嘉泽 +4 位作者 苏美华 陈约 郑杰允 尹良 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期124-132,共9页
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba... The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed. 展开更多
关键词 La_(2)CuO_(4) electronic conductivity Li-ionic conductivity Li-rich layered oxides high voltage
下载PDF
Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor
12
作者 于营波 康忠健 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期150-160,共11页
High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs... High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction. 展开更多
关键词 underwater high voltage pulse discharge circuit oscillation suppression state space average method pulse power thyristor
下载PDF
Degradation mechanism of high-voltage single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode material
13
作者 柳娜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期618-622,共5页
Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,deve... Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,developing high-voltage LiNi_(x)Co_(y)Mn_(z)O_(2)(x+y+z=1,NCM)to achieve high energy density is particularly important.However,under high voltage cycling,NCM often exhibits rapid capacity degradation,which can be attributed to oxygen release,structural phase transition and particle cracking.In this work,the representative single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)was studied under various high charge cut-off voltages.Analysis by x-ray diffraction(XRD),transmission electron microscope(TEM)and electron back scatter diffraction(EBSD)measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling,which is responsible for the increase of impedance and the rapid decay of capacity.Therefore,inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages.These findings provide effective guidance for the development of high-voltage NCM. 展开更多
关键词 high voltage Li-ion battery phase transition LiNi_(x)Co_(y)Mn_(z)O_(2)
下载PDF
Research on Inter-turn Short-circuit Fault Diagnosis Method Based on High Frequency Voltage Residual for PMSM
14
作者 Xiaobao Feng Bo Wang +2 位作者 Chaohui Liu Jiayun Zeng Zheng Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期256-265,共10页
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of... Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method. 展开更多
关键词 Inter-turn short-circuit fault(ITSCF) Permanent magnet synchronous machine(PMSM) high frequency(HF)injection voltage residual Fault diagnosis
下载PDF
Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker 被引量:13
15
作者 林莘 王飞鸣 +2 位作者 徐建源 夏亚龙 刘卫东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第3期223-229,共7页
According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged ... According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic. 展开更多
关键词 SF6 high voltage circuit breaker dielectric recovery characteristic the break-down voltage experiment of dynamic breakdown Saha ionization equilibrium
下载PDF
Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries 被引量:8
16
作者 Xi Zheng Ying Liao +6 位作者 Zhongru Zhang Jianping Zhu Fucheng Ren Huajin He Yuxuan Xiang Yezhen Zheng Y.Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期62-70,共9页
Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle... Ethyl-(2,2,2-trifluoroethyl)carbonate(ETFEC)is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4(LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly improved by the addition of 10%ETFEC into the normal carbonate electrolytes,e.g.,the capacity retention improved from 65.3%to 77.1%after 200 cycles at 60℃.The main reason can be ascribed to the high stability of ETFEC which prevents large oxidation of the electrolyte on the cathode surface.In addition,we also explore the feasibility of electrolytes using single fluoriated-solvents with and without additives.Our results show that the cycle performance of LNMO material can be greatly improved in 1 MLiPF6+pure ETFEC-solvent system with 2 wt%ethylene carbonate(EC)or ethylene sulfate(DTD).The capacity retention of the LNMO materials is 93%after 300 cycles,even better than that of carbonate-based electrolytes.It is shown that the additives are oxidized on the surface of LNMO particles and contribute to the formation of cathode/electrolyte interphase(CEI)films.This composite CEI film plays a crucial role in suppressing the serious decomposition of the electrolyte at high voltage. 展开更多
关键词 FLUORINATED solvent high voltage electrolyte LINI0.5MN1.5O4 INTERPHASE film Additive LITHIUM-ION batteries
下载PDF
Effects of high voltage electrical stimulation on the rate of pH decline,meat quality and color stability in chilled beef carcasses 被引量:4
17
作者 Ehsan Gharib Mombeni Manoochehr Gharib Mombeini +2 位作者 Lucas Chaves Figueiredo Luciano Soares Jacintho Siqueira Debora Testoni Dias 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2013年第9期716-719,共4页
Objective:To determine the effects of high voltage electrical stimulation(HVES,800 Voltage)on rapid decreases in pH values and improvements in meat quality.Methods:A total of SO beef carcasses were applied,divided int... Objective:To determine the effects of high voltage electrical stimulation(HVES,800 Voltage)on rapid decreases in pH values and improvements in meat quality.Methods:A total of SO beef carcasses were applied,divided into two groups,one as a control and another for HVES.Meat quality was evaluated based on M.hngissimus dorsi by examining pH and temperature leveb at 1,2,5,10 and 24 h,while color stability was examined seven days after slaughter.Results:HVES decreased the pH values of the meat and accelerated rigor mortis(P<0.05).HVES caused differences in instrumental color values compared with the control groups across the ageing period at 4℃.Conclusion:the HVES had positive effects on meat quality and color stability,in contrast to undesirable consumer preferences. 展开更多
关键词 BEEF Electrical STIMULATION high voltage PH
下载PDF
A new analytical model of high voltage silicon on insulator(SOI) thin film devices 被引量:5
18
作者 胡盛东 张波 李肇基 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期315-319,共5页
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Po... A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon fihn thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results. 展开更多
关键词 silicon critical electric field breakdown voltage thin silicon layer SOI high voltage device
下载PDF
New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications 被引量:10
19
作者 Ph.ROBIN-JOUAN M.YOUSFI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第6期690-694,共5页
The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure, namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respect... The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure, namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respectively. Based on solving a multi-term electron Boltz- mann equation the calculations use improved electron-gas collision cross sections for twelve SF6 dissociation products with a particular emphasis on the electron-vibrating molecule interactions. The ion kinetics is also considered and its role on the critical field becomes non negligible as the temperature is above 2000 K. These critical fields are then used in hydrodynamics simulations which correctly predict the circuit breaker behaviours observed in the case of breaking tests. 展开更多
关键词 breakdown electric field hot dissociated SF6 high voltage gas-circuit-breaker
下载PDF
Electrochemical characterization of MnO_2 as the cathode material for a high voltage hybrid capacitor 被引量:3
20
作者 Jian-ling Li Fei Gao +3 位作者 Yan Jing Rui-ying Miao Ke-zhong Wu Xin-dong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第5期576-580,共5页
Manganese dioxide (MnO2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO2 ... Manganese dioxide (MnO2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO2 electrode reached 240 F·g^-1. The new hybrid capacitor was constructed, combining A1/Al2O3 as the anode and MnO2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid capacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid capacitor had good impedance characteristics. 展开更多
关键词 manganese dioxide hybrid capacitor high voltage high energy density
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部