期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors
1
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 Gel polymer electrolyte UV cross-linking Energy density high voltage window
下载PDF
Rational construction of phosphate layer to optimize Cu-regulated Fe_(3)O_(4) as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries
2
作者 Shuhua Hao Yupeng Xing +4 位作者 Peiyu Hou Gang Zhao Jinzhao Huang Shipeng Qiu Xijin Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期133-141,共9页
Flexible aqueous energy storage devices with high security and flexibility are crucial for the progress of wearable energy storage.Particularly,aqueous rechargeable Ni-Fe batteries owning a large theoretical capacity,... Flexible aqueous energy storage devices with high security and flexibility are crucial for the progress of wearable energy storage.Particularly,aqueous rechargeable Ni-Fe batteries owning a large theoretical capacity,low cost and outstanding safety characteristics have emerged as a promising candidate for flexible aqueous energy storage devices.Herein,Cu-doped Fe_(3)O_(4)(CFO)with 3D coral structure was prepared by doping Cu^(2+) based on Fe_(3)O_(4)nanosheets(FO).Furthermore,the Fe-based anode material(CFPO)grown on carbon fibers was obtained by reconstructing the surface of CFO to form a low-crystallization shell which can enhance the ion transport.Excitingly,the newly developed CFPO electrode as an innovative anode material further exhibited a high capacity of 117.5 mAh g^(-1)(or 423 F g^(-1))at 1 A g^(-1).Then,the assembled aqueous Ni-Fe batteries with a high cell-voltage output of 1.6 V deliver a high capacity of 49.02 mAh g^(-1) at 1 A g^(-1) and retention ratio of 96.8%for capacitance after 10000 continuous cycles.What’s more,the aqueous quasi-solid-state batteries present a remarkable maximal energy density of 45.6 Wh kg^(-1) and a power density of 12 kW kg^(-1).This work provides an innovative and feasible way and optimization idea for the design of high-performance Fe-based anodes,and may promote the development of a new generation of flexible aqueous Ni-Fe batteries. 展开更多
关键词 Ni-Fe batteries high voltage window regulation high energy and power density Anode materials Amorphous phosphate layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部