期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test 被引量:8
1
作者 陈智韬 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期590-596,共7页
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ... The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs. 展开更多
关键词 engineered cementitious composites high volume fly ash impact properties SHPB
下载PDF
Properties of High Volume Fly Ash Concrete Compensated by Metakaolin or Silica Fume
2
作者 魏小胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期728-732,共5页
The compressive strength and dynamic modulus of high volume fly ash concrete with incorporation of either metakaolin or silica fume were investigated. The water to cementitious materials ratio was kept at 0.4 for all ... The compressive strength and dynamic modulus of high volume fly ash concrete with incorporation of either metakaolin or silica fume were investigated. The water to cementitious materials ratio was kept at 0.4 for all mixtures. The use of high volume fly ash in concrete greatly reduces the strength and dynamic modulus during the first 28 days. The decreased properties during the short term of high volume fly ash concrete is effectively compensated by the incorporation of metakaolin or silica fume. The DTA results confirmed that metakaolin or silica fume increase the amount of the hydration products. An empirical relationship between dynamic modulus and compressive strength of concrete has been obtained. This relation provides a nondestructive evaluation for estimating the strength of concrete by use of the dynamic modulus. 展开更多
关键词 high volume fly ash METAKAOLIN silica fume dynamic modulus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部