This paper presents a study on surface roughness generated by high speed milling of high volume fraction(65%) silicon carbide particlereinforced aluminum matrix(Si Cp/Al) composites.Typical 2D(Raand Rz) and 3D(Saand S...This paper presents a study on surface roughness generated by high speed milling of high volume fraction(65%) silicon carbide particlereinforced aluminum matrix(Si Cp/Al) composites.Typical 2D(Raand Rz) and 3D(Saand Sq) surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy.The 3D topography of the milled surface was studied as well.The results indicate that 3D parameters(Saand Sq) are more capable to describe the influence of the milling parameters on the surface quality,and among them Sqis preferable due to its good sensitivity.Sqdecreases with milling speed and increases with feed rate.The influence of axial depth of cut(ADOC) is negligible.展开更多
基金supported by the National Key Projects of Science and Technology of China (Item No.:2012ZX04003051-3)
文摘This paper presents a study on surface roughness generated by high speed milling of high volume fraction(65%) silicon carbide particlereinforced aluminum matrix(Si Cp/Al) composites.Typical 2D(Raand Rz) and 3D(Saand Sq) surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy.The 3D topography of the milled surface was studied as well.The results indicate that 3D parameters(Saand Sq) are more capable to describe the influence of the milling parameters on the surface quality,and among them Sqis preferable due to its good sensitivity.Sqdecreases with milling speed and increases with feed rate.The influence of axial depth of cut(ADOC) is negligible.