The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology ...The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology was introduced to remove water from MSW.The total water removals were proved to depend on the ventilation frequency and the temporal span in the hydrolytic stage. The ventilation frequency of 6 times/d was preferable in the hydrolytic stage.The hydrolytic span should not be prolonged more than ...展开更多
A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as ...A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.展开更多
Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a ...Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a serious problem during the pipeline transportation, leading to partial or total blockage of the pipeline and energy wastage. In this paper, a series of laboratory flow loop experiments were conducted to observe the wall sticking characteristics of crude oil with high water cut, high viscosity and high gel point at low transportation temperatures. The effects of shear stress and water cut on the wall sticking rate and occurrence temperature were investigated. Experimental results indicated that the wall sticking rate and occurrence temperature were lower under stronger shear stress and higher water cut conditions. A criterion of wall sticking occurrence temperature(WSOT) and a regression model of wall sticking rate were then established. Finally, the software was developed to calculate the pressure drop along the pipelines of crude oils with high water-cut. It was able to predict the wall sticking thickness of gelled oil and then calculate the pressure drop along the pipelines. A typical case study indicated that the prediction results obtained from the software were in agreement with actual measured values.展开更多
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou...A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.展开更多
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental s...On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.展开更多
Cloud water samples, LWC (Liquid Water Content) and meteorological data were collected at the Clingmans Dome, Tennessee, high-elevation site in Great Smoky Mountains National Park during the warm season from 1994 th...Cloud water samples, LWC (Liquid Water Content) and meteorological data were collected at the Clingmans Dome, Tennessee, high-elevation site in Great Smoky Mountains National Park during the warm season from 1994 through 2011. This paper presents results from 2000 through the conclusion of the study in 2011. Samples were analyzed for SO42", NO3, NH4+ and H+. These measurements were supplemented by measurements of ambient air and precipitation concentrations to estimate dry and wet deposition. Cloud water concentrations, LWC, cloud frequency, various meteorological measurements and information on nearby forest canopy were used to model cloud water deposition to gauge trends in deposition. Total deposition was calculated as the sum of cloud, dry and wet deposition estimates. Concentrations and deposition fluxes declined over the study period. The decreases in cloud water SO42" and NO3 concentrations were 40 percent and 26 percent, respectively. Three-year mean 5042 and NO3 deposition rates decreased by 71 percent and 70 percent, respectively. Trends in concentrations and depositions were comparable with trends in SO2 and NOx emissions from Tennessee Valley Authority power plants and aggregated emission reductions from electric generating units in adjacent states. Back trajectories were simulated with the HYSPLIT model and aggregated over cloud sampling periods from 2000 through 2007 and 2009 through 2011. Trajectories during periods with high H+ concentrations traveled over local EGU (Electric Generating Unit) emission sources in Tennessee and Kentucky to the Ohio River Valley, Alabama and Georgia with the conclusion that these source regions contributed to acidic cloud water deposition at Clingmans Dome. This work was supported by U.S. Environmental Protection Agency and the Tennessee Valley Authority with infrastructure support provided by the National Park Service.展开更多
[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton G...[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.展开更多
Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry,...Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.展开更多
The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) i...The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) in simulating liquid SWC was evaluated against observations from nine in-situ sites in the upper reach of the Heihe River Watershed(HRW),Northwest China.The CLM5.0 shows reliable performance in the study area with correlation coefficients(R) ranging between 0.79–0.93,root mean standard errors(RMSE)ranging between 0.044–0.097 m^(3)/m^(3),and the mean bias(BIAS) ranging between-0.084–0.061 m^(3)/m^(3).The slightly worse performance of CLM5.0 than CLM4.5 on alpine meadow and grassland is mainly caused by the revised canopy interception parameterization.The CLM5.0 overestimates interception and underestimates evapotranspiration(ET) on both alpine meadow and grassland during the growth period.The systematical overestimations at all the grassland sites indicate that the underestimation of ET is much larger than the overestimation of interception on grassland during growth period,while the errors of simulated interception and ET are partially canceled out on alpine meadow.Moreover,the underestimation of ET is more responsible for the overestimation of SWC than the overestimation of interception in the high mountainous area.It is necessary to estimate reasonable empirical parameter α(proportion of leaf water collection area) in interception parameterization scheme and further improve the dry surface layerbased soil evaporation resistance parameterization introduced in CLM5.0 in future researches.The performance of CLM5.0 is better under completely frozen stage than thawing stage and freezing stage,because of low variations of liquid SWC caused by extremely low hydraulic conductivity of soils.The underestimation of liquid SWC under frozen state is caused by underestimation of soil temperature,which leads to more ice mass and less liquid water in total water content.展开更多
To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.Th...To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.展开更多
BACKGROUND: Vibrio vulnifi cus inside the body could activate the NF-!B signaling pathwayand initiate the inflammatory cascade. The lung is one of the earliest organs affected by sepsisassociated with acute lung inju...BACKGROUND: Vibrio vulnifi cus inside the body could activate the NF-!B signaling pathwayand initiate the inflammatory cascade. The lung is one of the earliest organs affected by sepsisassociated with acute lung injury. High mobility group protein B1 (HMGB1) is an important late-actingpro-infl ammatory cytokine involving in the pathophysiology of sepsis. It is also involved in the injuryprocess in the lung, liver and intestine. There has been no report on the involvement of HMGB1 inVibrio vulnifi cus sepsis-induced lung injury.METHODS: Sixty rats were randomly divided into a normal control group (group A, n=10) anda Vibrio vulnificus sepsis group (group B, n=50). Sepsis was induced in the rats by subcutaneousinjection of Vibrio vulnificus (concentration 6×108 cfu/mL, volume 0.1 mL/100g)) into the left lowerlimbs. The rats in group B were sacrifi ced separately 1, 6, 12, 24, and 48 hours after the infection.Their lungs were stored as specimens, lung water content was measured, and lung pathology wasobserved under a light microscope. The expressions of the HMGB1 gene and protein in the lungswere detected by RT-PCR and Western blot. Data were analyzed with one-way analysis of variance(ANOVA) and the LSD method for pair-wise comparison between the two groups. P〈0.05 wasconsidered statistically signifi cant.RESULTS: Compared to group A (0.652±0.177), HMGB1 mRNA expression in the lungs ofgroup B was signifi cantly higher at 0 hour (1.161±0.358, P=0.013), 24 hours (1.679±0.235, P=0.000),and 48 hours (1.258±0.274, P=0.004) (P〈0.05), and peaked at 24 hours. Compared to group A(0.594±0.190), HMGB1 protein expression at 6 hours (1.408±0.567, P=0.026) after infection wassignificantly increased (P〈0. 05), and peaked at 24 hours (2.415±1.064, P=0.000) after infection.Compared to group A (0.699±0.054), lung water content was significantly increased at 6 hours(0.759±0.030, P=0.001),12 hours (0.767±0.023, P=0.000), 24 hours (0.771±0.043, P=0.000) and 48hours (0.789±0.137, P=0.000) after infection (P〈0.05). Compared to group A, pathological changesat 12 hours in group B indicate marked pulmonary vascular congestion, interstitial edema andinfl ammatory infi ltration. Alveolar cavity collapse and boundaries of the alveolar septum could not beclearly identifi ed.CONCLUSION: Vibrio vulnifi cus sepsis can lead to injury in rat lungs, and increased HMGB1expression in lung tissue may be one of the mechanisms for injury from Vibrio vulnifi cus sepsis.展开更多
A great amount of red mud generated from alumina production by Bayer process not only threatens the environment but also causes waste of secondary resources.High-iron-content red mud from Bayer process was employed to...A great amount of red mud generated from alumina production by Bayer process not only threatens the environment but also causes waste of secondary resources.High-iron-content red mud from Bayer process was employed to recover alumina and ferric oxide by the process of reduction-sintering,leaching and then magnetic beneficiation.Results of thermodynamic analyses show that ferric oxide should be reduced to Fe if reduction of ferric oxide and formation of sodium aluminate and calcium silicate happen simultaneously.Experimental results indicate that alumina recovery of Bayer red mud can reach 89.71%,and Fe recovery rate and the grade of magnetite concentrate are 60.67%and 61.78%,respectively,under the optimized sintering conditions.展开更多
Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of ...Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of the physical processes involved in the loading of vehicle structures is necessary for an optimization of effective countermeasures and protection systems. A quantitative description of the local momentum distribution on the vehicle underbody due to the detonation process is of special importance. In the following, a new test setup is presented that allows the experimental determination of the specific impulse distribution. It is based on a ring arrangement where the elements are nested into each other and the velocity of each ring is correlated with the local specific impulse at its position.The momentum transfer to a vehicle depends on a number of influencing factors such as: charge mass,embedding material(e.g. sand, gravel, clay), density, water content, saturation, depth of burial, ground clearance and vehicle shape. The presented technology is applied to quantify the influence of the embedding material(alluvial sand, quartz sand), the burial depth and the water content on the local specific impulse distribution. The obtained data can be used as initial condition for the numerical simulation of occupant safety assessment and as input for empirical modeling of momentum transfer on structures.展开更多
In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study resul...In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a small amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantially exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness.展开更多
By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to st...By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents(1.25 wt.%, 1.35 wt.%, and 1.45 wt.%) on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.展开更多
[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mount...[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mountain,Lianyungang City as research object,the sensitivity of WI to leaf FMC was studied at leaf level,and statistical characteristics were analyzed.[Result] The WI of sawtooth oaks leaves was sensitive to the changes of FMC,and the line regression level between them was significant.A fitting curve between leaf FMC and WI was obtained.[Conclusion] The research provides reference for acquisition methods of vegetation water remote sensing within the range of study area.展开更多
The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systemati...The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systematic direct-shear tests with large direct-shear apparatus are carded out for geobelt reinforced clay under different normal stresses and water content. A reinforcement-sand-clay layer system improving the interface behavior greatly is designed. The stress-strain relationship is investigated on the basis of the experimental results. The results show that with the increase of the normal stress, the shear strength between the clay and the reinforcement increases nonlinearly, and with the increase of the water content, the friction coefficient between the clay and the reinforcement decreases dramatically and the cohesion between the clay and the polypropylene geobelt increases initially, then decreases. There is an optimal value for the water content between the clay and the polypropylene geobelt, which is 2% lower than the optimal water content of clay compaction. This reinforcement-sand-clay layer system improves the shear strength of the interface remarkably. Therefore, the clay-sand-reinforcement layer system is a rather good design for practical use in reinforcement engineering.展开更多
基金supported by the National Key Technolo-gy R&D Program(No.2006BAC06B04,2006BAC02A03)the Key Grant Project of Shanghai Committee of Science and Technology(No.06dz12308).
文摘The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology was introduced to remove water from MSW.The total water removals were proved to depend on the ventilation frequency and the temporal span in the hydrolytic stage. The ventilation frequency of 6 times/d was preferable in the hydrolytic stage.The hydrolytic span should not be prolonged more than ...
文摘A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.
基金the support from the projects of the National Natural Science Foundation of China(No.51374224)for this research
文摘Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a serious problem during the pipeline transportation, leading to partial or total blockage of the pipeline and energy wastage. In this paper, a series of laboratory flow loop experiments were conducted to observe the wall sticking characteristics of crude oil with high water cut, high viscosity and high gel point at low transportation temperatures. The effects of shear stress and water cut on the wall sticking rate and occurrence temperature were investigated. Experimental results indicated that the wall sticking rate and occurrence temperature were lower under stronger shear stress and higher water cut conditions. A criterion of wall sticking occurrence temperature(WSOT) and a regression model of wall sticking rate were then established. Finally, the software was developed to calculate the pressure drop along the pipelines of crude oils with high water-cut. It was able to predict the wall sticking thickness of gelled oil and then calculate the pressure drop along the pipelines. A typical case study indicated that the prediction results obtained from the software were in agreement with actual measured values.
文摘A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.
文摘On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.
文摘Cloud water samples, LWC (Liquid Water Content) and meteorological data were collected at the Clingmans Dome, Tennessee, high-elevation site in Great Smoky Mountains National Park during the warm season from 1994 through 2011. This paper presents results from 2000 through the conclusion of the study in 2011. Samples were analyzed for SO42", NO3, NH4+ and H+. These measurements were supplemented by measurements of ambient air and precipitation concentrations to estimate dry and wet deposition. Cloud water concentrations, LWC, cloud frequency, various meteorological measurements and information on nearby forest canopy were used to model cloud water deposition to gauge trends in deposition. Total deposition was calculated as the sum of cloud, dry and wet deposition estimates. Concentrations and deposition fluxes declined over the study period. The decreases in cloud water SO42" and NO3 concentrations were 40 percent and 26 percent, respectively. Three-year mean 5042 and NO3 deposition rates decreased by 71 percent and 70 percent, respectively. Trends in concentrations and depositions were comparable with trends in SO2 and NOx emissions from Tennessee Valley Authority power plants and aggregated emission reductions from electric generating units in adjacent states. Back trajectories were simulated with the HYSPLIT model and aggregated over cloud sampling periods from 2000 through 2007 and 2009 through 2011. Trajectories during periods with high H+ concentrations traveled over local EGU (Electric Generating Unit) emission sources in Tennessee and Kentucky to the Ohio River Valley, Alabama and Georgia with the conclusion that these source regions contributed to acidic cloud water deposition at Clingmans Dome. This work was supported by U.S. Environmental Protection Agency and the Tennessee Valley Authority with infrastructure support provided by the National Park Service.
基金Supported by the National Natural Science Foundation of China(3077127231171483)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Innovation Project for Agriculture Science and Technology [cx(11)2054 ]Jiangsu Agriculture Science and Technology Support Program(SBE2010307)
文摘[Objective] The study aimed to find a possible way to combat or alleviate the negative effects caused by high temperature and water deficit at the growth stage of peak boll-setting.[Method] With Bt transgenic cotton GK22 as the test cultivar,a potted experiment was carried out to investigate the effects of the regulation of external substances(the water solutions of pix,urea and their mixture) on the physiological parameters,insecticidal protein content,yield and yield component of cotton plants in artificial climate chambers treated with high temperature and water deficit.[Result] The application of external pix,urea or their mixture was effective in stabilizing the physiological parameters of cotton plants,insecticidal protein content,yield and yield components.Compared with the exclusive application of pix and urea,the mixture of pix and urea played the most effective role in stabilizing the content of chlorophyll,soluble sugar and insecticidal protein,alleviating the increase of the content of free amino acids and proline,and increasing boll number per plant,boll weight and seed cotton yield.[Conclusion] The water solutions of pix,urea or their mixtures can be used to combat or alleviate the stress of high temperature and water deficit if they are sprayed onto cotton plants prior to stress occurrence.
文摘Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.
基金partially funded by the National Natural Science Foundation of China (41877148 and 42030501)Key Laboratory of Ecohydrology of Inland River Basin,Chinese Academy of Sciences。
文摘The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) in simulating liquid SWC was evaluated against observations from nine in-situ sites in the upper reach of the Heihe River Watershed(HRW),Northwest China.The CLM5.0 shows reliable performance in the study area with correlation coefficients(R) ranging between 0.79–0.93,root mean standard errors(RMSE)ranging between 0.044–0.097 m^(3)/m^(3),and the mean bias(BIAS) ranging between-0.084–0.061 m^(3)/m^(3).The slightly worse performance of CLM5.0 than CLM4.5 on alpine meadow and grassland is mainly caused by the revised canopy interception parameterization.The CLM5.0 overestimates interception and underestimates evapotranspiration(ET) on both alpine meadow and grassland during the growth period.The systematical overestimations at all the grassland sites indicate that the underestimation of ET is much larger than the overestimation of interception on grassland during growth period,while the errors of simulated interception and ET are partially canceled out on alpine meadow.Moreover,the underestimation of ET is more responsible for the overestimation of SWC than the overestimation of interception in the high mountainous area.It is necessary to estimate reasonable empirical parameter α(proportion of leaf water collection area) in interception parameterization scheme and further improve the dry surface layerbased soil evaporation resistance parameterization introduced in CLM5.0 in future researches.The performance of CLM5.0 is better under completely frozen stage than thawing stage and freezing stage,because of low variations of liquid SWC caused by extremely low hydraulic conductivity of soils.The underestimation of liquid SWC under frozen state is caused by underestimation of soil temperature,which leads to more ice mass and less liquid water in total water content.
基金The National Natural Science Foundations of China(No.51778133)the Transportation Science&Technology Project of Fujian Province(No.2017Y057)+1 种基金the China Railway Project(No.2017G007-C)Foundation of the China Scholarship Council(No.201906090163).
文摘To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.
文摘BACKGROUND: Vibrio vulnifi cus inside the body could activate the NF-!B signaling pathwayand initiate the inflammatory cascade. The lung is one of the earliest organs affected by sepsisassociated with acute lung injury. High mobility group protein B1 (HMGB1) is an important late-actingpro-infl ammatory cytokine involving in the pathophysiology of sepsis. It is also involved in the injuryprocess in the lung, liver and intestine. There has been no report on the involvement of HMGB1 inVibrio vulnifi cus sepsis-induced lung injury.METHODS: Sixty rats were randomly divided into a normal control group (group A, n=10) anda Vibrio vulnificus sepsis group (group B, n=50). Sepsis was induced in the rats by subcutaneousinjection of Vibrio vulnificus (concentration 6×108 cfu/mL, volume 0.1 mL/100g)) into the left lowerlimbs. The rats in group B were sacrifi ced separately 1, 6, 12, 24, and 48 hours after the infection.Their lungs were stored as specimens, lung water content was measured, and lung pathology wasobserved under a light microscope. The expressions of the HMGB1 gene and protein in the lungswere detected by RT-PCR and Western blot. Data were analyzed with one-way analysis of variance(ANOVA) and the LSD method for pair-wise comparison between the two groups. P〈0.05 wasconsidered statistically signifi cant.RESULTS: Compared to group A (0.652±0.177), HMGB1 mRNA expression in the lungs ofgroup B was signifi cantly higher at 0 hour (1.161±0.358, P=0.013), 24 hours (1.679±0.235, P=0.000),and 48 hours (1.258±0.274, P=0.004) (P〈0.05), and peaked at 24 hours. Compared to group A(0.594±0.190), HMGB1 protein expression at 6 hours (1.408±0.567, P=0.026) after infection wassignificantly increased (P〈0. 05), and peaked at 24 hours (2.415±1.064, P=0.000) after infection.Compared to group A (0.699±0.054), lung water content was significantly increased at 6 hours(0.759±0.030, P=0.001),12 hours (0.767±0.023, P=0.000), 24 hours (0.771±0.043, P=0.000) and 48hours (0.789±0.137, P=0.000) after infection (P〈0.05). Compared to group A, pathological changesat 12 hours in group B indicate marked pulmonary vascular congestion, interstitial edema andinfl ammatory infi ltration. Alveolar cavity collapse and boundaries of the alveolar septum could not beclearly identifi ed.CONCLUSION: Vibrio vulnifi cus sepsis can lead to injury in rat lungs, and increased HMGB1expression in lung tissue may be one of the mechanisms for injury from Vibrio vulnifi cus sepsis.
基金Project(2005CB623702)supported by the National Basic Research Program of China
文摘A great amount of red mud generated from alumina production by Bayer process not only threatens the environment but also causes waste of secondary resources.High-iron-content red mud from Bayer process was employed to recover alumina and ferric oxide by the process of reduction-sintering,leaching and then magnetic beneficiation.Results of thermodynamic analyses show that ferric oxide should be reduced to Fe if reduction of ferric oxide and formation of sodium aluminate and calcium silicate happen simultaneously.Experimental results indicate that alumina recovery of Bayer red mud can reach 89.71%,and Fe recovery rate and the grade of magnetite concentrate are 60.67%and 61.78%,respectively,under the optimized sintering conditions.
文摘Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of the physical processes involved in the loading of vehicle structures is necessary for an optimization of effective countermeasures and protection systems. A quantitative description of the local momentum distribution on the vehicle underbody due to the detonation process is of special importance. In the following, a new test setup is presented that allows the experimental determination of the specific impulse distribution. It is based on a ring arrangement where the elements are nested into each other and the velocity of each ring is correlated with the local specific impulse at its position.The momentum transfer to a vehicle depends on a number of influencing factors such as: charge mass,embedding material(e.g. sand, gravel, clay), density, water content, saturation, depth of burial, ground clearance and vehicle shape. The presented technology is applied to quantify the influence of the embedding material(alluvial sand, quartz sand), the burial depth and the water content on the local specific impulse distribution. The obtained data can be used as initial condition for the numerical simulation of occupant safety assessment and as input for empirical modeling of momentum transfer on structures.
基金financially supported by China Guangdong Province Science and Technology Plan Project(Nos.2009B0903002882010B090300059+2 种基金2011A0808020032011B0904005192012B090600030)
文摘In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a small amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantially exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness.
基金financially supported by the China Guangdong Province Science and Technology Plan Project(Nos.2010B0903000592011A080802003+1 种基金2011B090400519and 2012B090600030)
文摘By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents(1.25 wt.%, 1.35 wt.%, and 1.45 wt.%) on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.
基金Supported by Natural Science Foundation of Jiangsu Province(BK2009627)~~
文摘[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mountain,Lianyungang City as research object,the sensitivity of WI to leaf FMC was studied at leaf level,and statistical characteristics were analyzed.[Result] The WI of sawtooth oaks leaves was sensitive to the changes of FMC,and the line regression level between them was significant.A fitting curve between leaf FMC and WI was obtained.[Conclusion] The research provides reference for acquisition methods of vegetation water remote sensing within the range of study area.
文摘The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systematic direct-shear tests with large direct-shear apparatus are carded out for geobelt reinforced clay under different normal stresses and water content. A reinforcement-sand-clay layer system improving the interface behavior greatly is designed. The stress-strain relationship is investigated on the basis of the experimental results. The results show that with the increase of the normal stress, the shear strength between the clay and the reinforcement increases nonlinearly, and with the increase of the water content, the friction coefficient between the clay and the reinforcement decreases dramatically and the cohesion between the clay and the polypropylene geobelt increases initially, then decreases. There is an optimal value for the water content between the clay and the polypropylene geobelt, which is 2% lower than the optimal water content of clay compaction. This reinforcement-sand-clay layer system improves the shear strength of the interface remarkably. Therefore, the clay-sand-reinforcement layer system is a rather good design for practical use in reinforcement engineering.