The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) i...The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) in simulating liquid SWC was evaluated against observations from nine in-situ sites in the upper reach of the Heihe River Watershed(HRW),Northwest China.The CLM5.0 shows reliable performance in the study area with correlation coefficients(R) ranging between 0.79–0.93,root mean standard errors(RMSE)ranging between 0.044–0.097 m^(3)/m^(3),and the mean bias(BIAS) ranging between-0.084–0.061 m^(3)/m^(3).The slightly worse performance of CLM5.0 than CLM4.5 on alpine meadow and grassland is mainly caused by the revised canopy interception parameterization.The CLM5.0 overestimates interception and underestimates evapotranspiration(ET) on both alpine meadow and grassland during the growth period.The systematical overestimations at all the grassland sites indicate that the underestimation of ET is much larger than the overestimation of interception on grassland during growth period,while the errors of simulated interception and ET are partially canceled out on alpine meadow.Moreover,the underestimation of ET is more responsible for the overestimation of SWC than the overestimation of interception in the high mountainous area.It is necessary to estimate reasonable empirical parameter α(proportion of leaf water collection area) in interception parameterization scheme and further improve the dry surface layerbased soil evaporation resistance parameterization introduced in CLM5.0 in future researches.The performance of CLM5.0 is better under completely frozen stage than thawing stage and freezing stage,because of low variations of liquid SWC caused by extremely low hydraulic conductivity of soils.The underestimation of liquid SWC under frozen state is caused by underestimation of soil temperature,which leads to more ice mass and less liquid water in total water content.展开更多
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o...Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.展开更多
The influence of temperature on the engineered properties of bentonite-sand mixtures (B/S) is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste dispos...The influence of temperature on the engineered properties of bentonite-sand mixtures (B/S) is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste disposal. We experimentally studied the influence of temperature on soil unsaturated hydraulic properties related to water holding capacity and permeability of GMZ B/S in China. The vapor equilibrium method and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k). The results show that the SWCC under different temperatures from 20℃ to 60 ℃ tends to be the same. Temperature influence on unsaturated permeability is more relevant at low suctions, no clear effect is detected below a degree of saturation of 74%, and experimental data show that temperature dependence on unsaturated permeability is small.展开更多
开采沉陷是煤炭资源井工开采所面临的主要环境地质问题,其中松散层变形是东部高潜水位矿区生态修复和西部生态脆弱区保护所关注的重点,获得沉陷变形参数对推动开采减损、生态环境保护与修复有着重要的指导意义。借助CiteSpace文献计量软...开采沉陷是煤炭资源井工开采所面临的主要环境地质问题,其中松散层变形是东部高潜水位矿区生态修复和西部生态脆弱区保护所关注的重点,获得沉陷变形参数对推动开采减损、生态环境保护与修复有着重要的指导意义。借助CiteSpace文献计量软件,基于中国知网(China National Knowledge Infrastructure,CNKI)数据库进行可视化分析,通过对该研究方向近30年主要研究力量、研究热点和现状趋势量化统计与分析,详细地阐述了该方向的研究现状,简要概述了沉陷成因、理论分析、室内试验、数值模拟及原位实测等方面开展的研究内容。从多学科交叉促进理论研究发展、多方法联合建立高精度动态监测、发展与创新测试装备和技术等方面对其未来趋势进行了展望,提出“空-天-地-孔”一体化监测平台的建设与运营,以期通过多维度、网格化立体数据的获取,进一步掌握松散层内部变形特征与传递机理,为实施“源头控制”和“过程治理”理念和评价废弃矿井CO_(2)封存地质条件提供基础数据与科学支撑。展开更多
基金partially funded by the National Natural Science Foundation of China (41877148 and 42030501)Key Laboratory of Ecohydrology of Inland River Basin,Chinese Academy of Sciences。
文摘The model performance in simulating soil water content(SWC) is crucial for successfully modeling earth’s system,especially in high mountainous areas.In this study,the performance of Community Land Model 5.0(CLM5.0) in simulating liquid SWC was evaluated against observations from nine in-situ sites in the upper reach of the Heihe River Watershed(HRW),Northwest China.The CLM5.0 shows reliable performance in the study area with correlation coefficients(R) ranging between 0.79–0.93,root mean standard errors(RMSE)ranging between 0.044–0.097 m^(3)/m^(3),and the mean bias(BIAS) ranging between-0.084–0.061 m^(3)/m^(3).The slightly worse performance of CLM5.0 than CLM4.5 on alpine meadow and grassland is mainly caused by the revised canopy interception parameterization.The CLM5.0 overestimates interception and underestimates evapotranspiration(ET) on both alpine meadow and grassland during the growth period.The systematical overestimations at all the grassland sites indicate that the underestimation of ET is much larger than the overestimation of interception on grassland during growth period,while the errors of simulated interception and ET are partially canceled out on alpine meadow.Moreover,the underestimation of ET is more responsible for the overestimation of SWC than the overestimation of interception in the high mountainous area.It is necessary to estimate reasonable empirical parameter α(proportion of leaf water collection area) in interception parameterization scheme and further improve the dry surface layerbased soil evaporation resistance parameterization introduced in CLM5.0 in future researches.The performance of CLM5.0 is better under completely frozen stage than thawing stage and freezing stage,because of low variations of liquid SWC caused by extremely low hydraulic conductivity of soils.The underestimation of liquid SWC under frozen state is caused by underestimation of soil temperature,which leads to more ice mass and less liquid water in total water content.
基金the National Natural Science Foundation of China (Grant Nos.41601296,41571278 and 41771321)China Postdoctoral Science Foundation (Grant No.2016M592720)+1 种基金Applied Basic Research Foundation of Yunnan Province (Grant No.2016FD011)Sichuan Science and Technology Program (2018SZ0132)
文摘Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.
基金Funded by the Chinese National Defense Science and Industry(No.2007[834])
文摘The influence of temperature on the engineered properties of bentonite-sand mixtures (B/S) is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste disposal. We experimentally studied the influence of temperature on soil unsaturated hydraulic properties related to water holding capacity and permeability of GMZ B/S in China. The vapor equilibrium method and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k). The results show that the SWCC under different temperatures from 20℃ to 60 ℃ tends to be the same. Temperature influence on unsaturated permeability is more relevant at low suctions, no clear effect is detected below a degree of saturation of 74%, and experimental data show that temperature dependence on unsaturated permeability is small.
文摘开采沉陷是煤炭资源井工开采所面临的主要环境地质问题,其中松散层变形是东部高潜水位矿区生态修复和西部生态脆弱区保护所关注的重点,获得沉陷变形参数对推动开采减损、生态环境保护与修复有着重要的指导意义。借助CiteSpace文献计量软件,基于中国知网(China National Knowledge Infrastructure,CNKI)数据库进行可视化分析,通过对该研究方向近30年主要研究力量、研究热点和现状趋势量化统计与分析,详细地阐述了该方向的研究现状,简要概述了沉陷成因、理论分析、室内试验、数值模拟及原位实测等方面开展的研究内容。从多学科交叉促进理论研究发展、多方法联合建立高精度动态监测、发展与创新测试装备和技术等方面对其未来趋势进行了展望,提出“空-天-地-孔”一体化监测平台的建设与运营,以期通过多维度、网格化立体数据的获取,进一步掌握松散层内部变形特征与传递机理,为实施“源头控制”和“过程治理”理念和评价废弃矿井CO_(2)封存地质条件提供基础数据与科学支撑。