Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces...Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measu...For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.展开更多
As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and wat...As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and water influx create great influence on the accuracy. Based on the existing research, we proposed a new material balance equation which considered the differences of composition between produced and injected fluids and the effect of water influx, and a solution was provided in this paper. The results of the method are closer to the actual situation because they are built on the law of conservation of mass, and the using of curve fitting method can not only avoid the use of water influx coefficient but also obtain the water influx rate and reserves at the same time. The YH-23 gas condensate reservoir is taking as a typical subject to do the research, which has been exploited by cycle gas injection for 14 years. Three different methods are used to calculate the reserves, and the results show that the method proposed in this paper has minimum error of 2.96%.展开更多
The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water g...The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.展开更多
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth...Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.展开更多
As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect a...As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.展开更多
In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirement...In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.展开更多
YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the con...YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .展开更多
A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space veloc...A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.展开更多
With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_...With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.展开更多
Gasification unit is one of the key subsystems in the IGCC power system;the operating parameters of gasifier directly affect syngas quality and performance of whole IGCC system. The system model of gasification unit w...Gasification unit is one of the key subsystems in the IGCC power system;the operating parameters of gasifier directly affect syngas quality and performance of whole IGCC system. The system model of gasification unit with coal water slurry gasifier was simulated and calculated using THERMOFLEX software, and the relations of oxygen coal ratio (Roc), water coal ratio (Rsc), gasification pressure, gasification temperature and cold gas efficiency were mostly researched. The results show that Roc and Rsc have effect of mutual restriction on gasification temperature, cold gas efficiency and syngas composition. Gasification pressure mainly determines the capacity of the gasifier, little effects on syngas composition.展开更多
This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonati...This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonation time (T1) which is the time necessary so that the face of carbonation arrives until the reinforcement from a probabilistic analysis. Monte Carlo simulations are realized under the assumption that the carbonic gas on the surface of the concrete is random variable with a log-normal probability distribution.展开更多
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown t...To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs. Various techniques were proposed to solve these problems. In this work, a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated. By utilizing numerical simulation technique, it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio (0.98), long burn-up (60 GWD/t) and negative void reactivity coefficients.展开更多
基金Supported by the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R81)the Technology Support Project of Tianjin(No.16YFZCNC00810)
文摘Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
文摘For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.
文摘As we all know, cyclic gas injection is one of the most effective development methods to improve condensate oil recovery. When dealing with the calculation of the reserves, the injection-production differences and water influx create great influence on the accuracy. Based on the existing research, we proposed a new material balance equation which considered the differences of composition between produced and injected fluids and the effect of water influx, and a solution was provided in this paper. The results of the method are closer to the actual situation because they are built on the law of conservation of mass, and the using of curve fitting method can not only avoid the use of water influx coefficient but also obtain the water influx rate and reserves at the same time. The YH-23 gas condensate reservoir is taking as a typical subject to do the research, which has been exploited by cycle gas injection for 14 years. Three different methods are used to calculate the reserves, and the results show that the method proposed in this paper has minimum error of 2.96%.
文摘The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.
基金Supported by the China National Science and Technology Major Project(2016ZX05062)the PetroChina Science and Technology Major Project(2016E-0611)
文摘Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05026-002,2016ZX05028-001,2016ZX05024-005)
文摘As the classical transient flow model cannot simulate the water hammer effect of gas well, a transient flow mathematical model of multiphase flow gas well is established based on the mechanism of water hammer effect and the theory of multiphase flow. With this model, the transient flow of gas well can be simulated by segmenting the curved part of tubing and calculating numerical solution with the method of characteristic curve. The results show that the higher the opening coefficient of the valve when closed, the larger the peak value of the wellhead pressure, the more gentle the pressure fluctuation, and the less obvious the pressure mutation area will be. On the premise of not exceeding the maximum shut-in pressure of the tubing, adopting large opening coefficient can reduce the impact of the pressure wave. The higher the cross-section liquid holdup, the greater the pressure wave speed, and the shorter the propagation period will be. The larger the liquid holdup, the larger the variation range of pressure, and the greater the pressure will be. In actual production, the production parameters can be adjusted to get the appropriate liquid holdup, control the magnitude and range of fluctuation pressure, and reduce the impact of water hammer effect. When the valve closing time increases, the maximum fluctuating pressure value of the wellhead decreases, the time of pressure peak delays, and the pressure mutation area gradually disappears. The shorter the valve closing time, the faster the pressure wave propagates. Case simulation proves that the transient flow model of gas well can optimize the reasonable valve opening coefficient and valve closing time, reduce the harm of water hammer impact on the wellhead device and tubing, and ensure the integrity of the wellbore.
文摘In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.
文摘YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .
文摘A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperatureprogrammed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to- DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions; enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.
文摘With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na_2SO_4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.
文摘Gasification unit is one of the key subsystems in the IGCC power system;the operating parameters of gasifier directly affect syngas quality and performance of whole IGCC system. The system model of gasification unit with coal water slurry gasifier was simulated and calculated using THERMOFLEX software, and the relations of oxygen coal ratio (Roc), water coal ratio (Rsc), gasification pressure, gasification temperature and cold gas efficiency were mostly researched. The results show that Roc and Rsc have effect of mutual restriction on gasification temperature, cold gas efficiency and syngas composition. Gasification pressure mainly determines the capacity of the gasifier, little effects on syngas composition.
文摘This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonation time (T1) which is the time necessary so that the face of carbonation arrives until the reinforcement from a probabilistic analysis. Monte Carlo simulations are realized under the assumption that the carbonic gas on the surface of the concrete is random variable with a log-normal probability distribution.
文摘To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs. Various techniques were proposed to solve these problems. In this work, a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated. By utilizing numerical simulation technique, it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio (0.98), long burn-up (60 GWD/t) and negative void reactivity coefficients.