An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o...An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.展开更多
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fl...Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.展开更多
The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe th...The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe the actual well,especially with vertical flow along the wellbore.In order to improve the accuracy of the results,two improved approaches are established,by coupling the ideas of"High Kv in Wellblock"into the aforementioned methods on discharge allocation to consider the vertical flow展开更多
After successfully locating one abandoned brine well by an electromagnetic method during testing in 2001 and five abandoned brine wells by a high resolution magnetic method during 2002, a high resolution magnetic meth...After successfully locating one abandoned brine well by an electromagnetic method during testing in 2001 and five abandoned brine wells by a high resolution magnetic method during 2002, a high resolution magnetic method was again proposed to search for wells in 2003 when a second sensor was employed to acquire data for calculating the pseudo vertical gradient of magnetic fields. Total area surveyed in 2003 was 1,024,000 ft 2, which was divided into grids with an average size of 10,000 ft 2 and distributed across eight different sites. Magnetic anomalies and their vertical gradients from known brine wells were first recorded as signatures to identify anomalies caused by possible buried brine wells. Of fifty one verified anomalies, thirty one anomalies were due to wells buried at depths from 0 to 8.5 ft: twenty one 6 to 9 inch abandoned brine wells, seven 1.5 to 3 inch probable water wells, one 16 inch dewatering well for a construction site at a depth of 3 ft, and two 4 inch wells on the ground surface. Approximate monopole shaped anomalies were observed from all these wells after data corrections. However, the range of amplitudes of magnetic anomalies from 7,000 to 28,000 nT from these abandoned brine wells was measured. This range of anomalies is mainly due to the thickness and depth of buried wells. Anomaly amplitudes from 1.5 to 3 inch wells are 4,000 to 8,000 nT and linearly correlate with the buried depth. One 3 inch well that caused an anomaly of 13,000 nT could be the inner pipe of a brine well. Gradient anomalies are roughly in a range of 100 to 200 nT/inch for 1.5 to 3 inch wells and 200 to 300 nT/inch for brine wells.As indicated by the potential field theory, gradient data possess higher horizontal resolution than the magnetic field itself. Gradient data provide valuable assistance in determining horizontal locations of anomaly sources for excavation. In practice, however, improvement in the horizontal resolution is limited by survey line spacing. If only one sensor is used in a survey, there is rapid decrease in the horizontal resolution when sensor height increases from 14 to 44 inches. This indicates that it is critical to keep the sensor as close to the ground as possible when hunting buried wells that are close to each other. It also suggests that the downward continuation is useful to increase the horizontal resolution in well hunting.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology...By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.展开更多
Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigu...Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigue failure. Therefore, this article is based on the dynamic finite element theory, aiming at the characteristics of large-size tubing strings in deep gas wells. The finite element mechanics model and mathematical model of the tubing string vibration of the packer of high-pressure gas wells were established, and the ANSYS software was re-developed. The finite element analysis program for the vibration dynamics of the unbuckled and buckled strings of gas wells was compiled with APDL, and the displacement of the longitudinal vibration of the tubing string of high-pressure gas wells was studied. According to different sizes of tubing strings currently used in deep gas wells and gas fields, simulation calculations are carried out, and the axial impact load and buckling damage laws of the tubing strings of the entire well section under different production rates are obtained. It provides a theoretical basis for the prediction of tubing string vibration law and measures to prevent tubing string vibration.展开更多
In crude oil transportation, adhesion of oil on pipe wall can cause partial or total blockage of the pipe. This process is significantly affected by wall sticking occurrence temperature(WSOT). In this work, an efficie...In crude oil transportation, adhesion of oil on pipe wall can cause partial or total blockage of the pipe. This process is significantly affected by wall sticking occurrence temperature(WSOT). In this work, an efficient approach for estimating WSOT of high water-cut oil, which can agree well with the actual environment of multiphase transportation pipeline, is proposed. Based on the energy dissipation theory, it is possible to make comparison of average shear rates between the stirred vessel and the flow loop. The impacts of water content and shear rate on WSOT are investigated using the stirred vessel and the flow loop. Good agreement has been observed between the stirred vessel and the flow loop results with the maximum and the average absolute deviations equating to 3.30 °C and 2.18 °C, respectively. The development of gathering scheme can enjoy some benefits from this method.展开更多
The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These incl...The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These include monolithic integration of QWIPs with GaAs based electronic and optoelectronic devices,high frequency and high speed QWIPs and applications,multicolor and multispectral detectors,and p-type QWIPs.展开更多
Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a compl...Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.展开更多
随着社会的发展,中国经济实力的日益增强,人们对办公环境的要求也越来越高。本文以美国国际 WELL 建筑研究所制定的WELL 健康建筑标准为基础,结合某办公空间改造项目为实例,探讨如何在办公场所的设计中应用这一套标准,哪些与健康密切相...随着社会的发展,中国经济实力的日益增强,人们对办公环境的要求也越来越高。本文以美国国际 WELL 建筑研究所制定的WELL 健康建筑标准为基础,结合某办公空间改造项目为实例,探讨如何在办公场所的设计中应用这一套标准,哪些与健康密切相关的因素需要我们关注将是本文重点关注与讨论的内容,旨在为当代的人们营造一个全面的健康环境。展开更多
The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. T...The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. The convergence of the semidijcrete method is given. The numerical calculating resulis show that the speed of convergence is high.展开更多
基金funded by SINOPEC Science and Technology Project P18080by National Energy Administration Research and Development Center Project.
文摘An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.
文摘Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.
文摘The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe the actual well,especially with vertical flow along the wellbore.In order to improve the accuracy of the results,two improved approaches are established,by coupling the ideas of"High Kv in Wellblock"into the aforementioned methods on discharge allocation to consider the vertical flow
文摘After successfully locating one abandoned brine well by an electromagnetic method during testing in 2001 and five abandoned brine wells by a high resolution magnetic method during 2002, a high resolution magnetic method was again proposed to search for wells in 2003 when a second sensor was employed to acquire data for calculating the pseudo vertical gradient of magnetic fields. Total area surveyed in 2003 was 1,024,000 ft 2, which was divided into grids with an average size of 10,000 ft 2 and distributed across eight different sites. Magnetic anomalies and their vertical gradients from known brine wells were first recorded as signatures to identify anomalies caused by possible buried brine wells. Of fifty one verified anomalies, thirty one anomalies were due to wells buried at depths from 0 to 8.5 ft: twenty one 6 to 9 inch abandoned brine wells, seven 1.5 to 3 inch probable water wells, one 16 inch dewatering well for a construction site at a depth of 3 ft, and two 4 inch wells on the ground surface. Approximate monopole shaped anomalies were observed from all these wells after data corrections. However, the range of amplitudes of magnetic anomalies from 7,000 to 28,000 nT from these abandoned brine wells was measured. This range of anomalies is mainly due to the thickness and depth of buried wells. Anomaly amplitudes from 1.5 to 3 inch wells are 4,000 to 8,000 nT and linearly correlate with the buried depth. One 3 inch well that caused an anomaly of 13,000 nT could be the inner pipe of a brine well. Gradient anomalies are roughly in a range of 100 to 200 nT/inch for 1.5 to 3 inch wells and 200 to 300 nT/inch for brine wells.As indicated by the potential field theory, gradient data possess higher horizontal resolution than the magnetic field itself. Gradient data provide valuable assistance in determining horizontal locations of anomaly sources for excavation. In practice, however, improvement in the horizontal resolution is limited by survey line spacing. If only one sensor is used in a survey, there is rapid decrease in the horizontal resolution when sensor height increases from 14 to 44 inches. This indicates that it is critical to keep the sensor as close to the ground as possible when hunting buried wells that are close to each other. It also suggests that the downward continuation is useful to increase the horizontal resolution in well hunting.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.
文摘Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigue failure. Therefore, this article is based on the dynamic finite element theory, aiming at the characteristics of large-size tubing strings in deep gas wells. The finite element mechanics model and mathematical model of the tubing string vibration of the packer of high-pressure gas wells were established, and the ANSYS software was re-developed. The finite element analysis program for the vibration dynamics of the unbuckled and buckled strings of gas wells was compiled with APDL, and the displacement of the longitudinal vibration of the tubing string of high-pressure gas wells was studied. According to different sizes of tubing strings currently used in deep gas wells and gas fields, simulation calculations are carried out, and the axial impact load and buckling damage laws of the tubing strings of the entire well section under different production rates are obtained. It provides a theoretical basis for the prediction of tubing string vibration law and measures to prevent tubing string vibration.
基金financially supported by the National Natural Science Foundation of China(NNSF,Grant No.51534007)。
文摘In crude oil transportation, adhesion of oil on pipe wall can cause partial or total blockage of the pipe. This process is significantly affected by wall sticking occurrence temperature(WSOT). In this work, an efficient approach for estimating WSOT of high water-cut oil, which can agree well with the actual environment of multiphase transportation pipeline, is proposed. Based on the energy dissipation theory, it is possible to make comparison of average shear rates between the stirred vessel and the flow loop. The impacts of water content and shear rate on WSOT are investigated using the stirred vessel and the flow loop. Good agreement has been observed between the stirred vessel and the flow loop results with the maximum and the average absolute deviations equating to 3.30 °C and 2.18 °C, respectively. The development of gathering scheme can enjoy some benefits from this method.
文摘The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These include monolithic integration of QWIPs with GaAs based electronic and optoelectronic devices,high frequency and high speed QWIPs and applications,multicolor and multispectral detectors,and p-type QWIPs.
基金supported by National 973 Key Basic Research Development Program (No.2007CB209608)National 863 High Technology Research Development Program (No. 2007AA06Z218)
文摘Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.
文摘随着社会的发展,中国经济实力的日益增强,人们对办公环境的要求也越来越高。本文以美国国际 WELL 建筑研究所制定的WELL 健康建筑标准为基础,结合某办公空间改造项目为实例,探讨如何在办公场所的设计中应用这一套标准,哪些与健康密切相关的因素需要我们关注将是本文重点关注与讨论的内容,旨在为当代的人们营造一个全面的健康环境。
文摘The article gives a semi-discrete method for solving high-dimension wave equationBy the method, high-dimension wave equation is converted by, means of diseretizationinto I-D wave equation system which is well-posed. The convergence of the semidijcrete method is given. The numerical calculating resulis show that the speed of convergence is high.