High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effect...High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.展开更多
Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the t...Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.展开更多
YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the con...YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .展开更多
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor...The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.展开更多
The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility...The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.展开更多
In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue ...In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer.展开更多
The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zhe...The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.展开更多
Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces...Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.展开更多
The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-c...The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation,and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %,which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.展开更多
An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dy...An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.展开更多
The constitution of high-caustic ratio and highly concentrated sodium aluminate solutions has been investigated by Raman spectra method.By comparison with the Raman spectra of crystalline solids of Ca_3[Al(OH)_6]_2 an...The constitution of high-caustic ratio and highly concentrated sodium aluminate solutions has been investigated by Raman spectra method.By comparison with the Raman spectra of crystalline solids of Ca_3[Al(OH)_6]_2 and Ba_2[Al_2(OH)_(10)],it can be concluded that AI(OH)_6^(3-)ion and perhaps its polymers may be formed in these solutions.展开更多
This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pr...This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.展开更多
Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ...Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.展开更多
An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropag...An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropagation method(3D BPM)is used to optimize the structure parameters of the 90°hybrid.The designed compact structure is demonatrated to have a low excess loss less than-0.15 dB,a high common mode rejection ratio better than 40 dB,and a low relative phase deviation less than±2.5°.The designed hybrid is manufactured on a sandwitched structure deposited on an InP substrate.The measured results show that the common mode rejection ratios are larger than 20 dB in a range from 1520 nm to 1580 nm.The phase deviations are less than±5°in a range from 1545 nm to 1560 nm and less than±7°across the C band.The designed 90°optical hybrid is suitable well for realizing miniaturization,high-properties,and high bandwidth of coherent receiver.展开更多
Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in ...Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.展开更多
With the worldwide rise in electric vehicles, the demand for lithium batteries is increasing day by day. In 2015, China's new energy vehicles developed rapidly, and the price of lithium carbonate rose from fifty or s...With the worldwide rise in electric vehicles, the demand for lithium batteries is increasing day by day. In 2015, China's new energy vehicles developed rapidly, and the price of lithium carbonate rose from fifty or sixty thousand yuan per ton to 150 thousand yuan. In the past, lithium was often extracted from spodumene (LiAlSi2O6), which is time consuming, laborious and expensive. Over the past decade, abundant lithium has been discovered in brackish and salt water lakes, which is an important way to obtain lithium resources.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect o...A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.展开更多
基金support for this research provided by the National Natural Science Foundation of China(Grant No.52105458)Beijing Natural Science Foundation(Grant No.3222009)+1 种基金Huaneng Group Science and Technology Research Project(No:HNKJ22-H105)China Postdoctoral Science Foundation(Grant No.2022M711807)。
文摘High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed.
基金Natural Science Foundation of Hebei Province(China),Grant/Award Numbers:B2020203013,B2021203016Science and Technology Project of Hebei Education Department(China),Grant/Award Number:QN2020137+3 种基金Cultivation Project for Basic Research Innovation of Yanshan University(China),Grant/Award Number:2021LGZD015Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(China),Grant/Award Number:22567616HNatural Science Foundation of Heilongjiang Province(China),Grant/Award Number:LH2022B025Fundamental Research Funds for the Provincial Universities of Heilongjiang Province(China),Grant/Award Number:KYYWF10236190104。
文摘Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.
文摘YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
文摘The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.
文摘The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.
基金The National Natural Science Foundation of China(No. 51008071 )the Natural Science Foundation of Jiangsu Province(No. BK2010413)
文摘In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer.
基金supported by the National Natural Science Foundation of China (11672081)
文摘The bubbles rise up and burst at the free surface is a complex two-phase process.A free energy lattice Boltzmann method(LBM)model is adopted in this paper to study this phenomenon.The interface capturing technique[Zheng et al.,2006]is used to deal with the high density ratio problem.The Laplace law and the air-water interface capturing ability are validated for the multiphase model.The interaction between the single bubble or multiple bubbles and the free surface are studied by the multiphase model.The force acting on the bubble and the evolution of the free surface is studied.Meanwhile,effect of the initial distance between two adjacent bubbles on interaction effects of multiple bubbles is investigated as well.
基金Supported by the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R81)the Technology Support Project of Tianjin(No.16YFZCNC00810)
文摘Biofloc technology has been applied successfully in the intensive aquaculture of several fish and shrimp species. The growth of heterotrophic microorganisms can be stimulated through adding extra carbon, which reduces the nitrogen level in the water and provides microbial protein to the animals. However, most of the studies and practical applications have been conducted in freshwater and marine environment. This paper focused on brine shrimp Artemia that lives in high salinity environment together with other halophilic or halotolerant microorganisms. The effect of carbon supplementation on Artemia growth, water quality, and microbial diversity of biofl ocs was studied in the closed culture condition without any water exchange. The salinity of the culture medium was 100. A 24-d culture trial was conducted through supplementing sucrose at carbon/nitrogen (C/N) ratio of 5, 15, and 30 (Su5, Su15, and Su30), respectively. The culture without adding sucrose was used as a control. Artemia was fed formulated feed at a feeding ration of 60% recommended feeding level. The results showed that sucrose supplementation at higher C/N ratio (15 and 30) signifi cantly improved the Artemia survival, growth and water quality ( P <0.05). Addition of sucrose at C/N ratio of 15 and 30 significantly increased biofloc volume (BFV)( P <0.05). The Illumina MiSeq sequencing analysis showed that supplementing carbon at C/N ratio of 15 had a better total bacterial diversity and richness, and shaped the microbial composition at genera level. This study should provide information for studying the mechanism of biofloc technology and its application in high salinity culture conditions.
基金Item Sponsored by Guiding Program of Science and Technology Research of Hebei Province of China(94122123)
文摘The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation,and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %,which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.
文摘An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.
文摘The constitution of high-caustic ratio and highly concentrated sodium aluminate solutions has been investigated by Raman spectra method.By comparison with the Raman spectra of crystalline solids of Ca_3[Al(OH)_6]_2 and Ba_2[Al_2(OH)_(10)],it can be concluded that AI(OH)_6^(3-)ion and perhaps its polymers may be formed in these solutions.
基金supported by the Beijing Jointly Building Project of Key Discipline-the High Efficiency Utilization of Fast Growing Wood
文摘This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.
文摘Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402404)the Beijing Natural Science Foundation,China(Grant No.4194093)the National Natural Science Foundation of China(Grant Nos.61635010,61674136,and 61435002).
文摘An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropagation method(3D BPM)is used to optimize the structure parameters of the 90°hybrid.The designed compact structure is demonatrated to have a low excess loss less than-0.15 dB,a high common mode rejection ratio better than 40 dB,and a low relative phase deviation less than±2.5°.The designed hybrid is manufactured on a sandwitched structure deposited on an InP substrate.The measured results show that the common mode rejection ratios are larger than 20 dB in a range from 1520 nm to 1580 nm.The phase deviations are less than±5°in a range from 1545 nm to 1560 nm and less than±7°across the C band.The designed 90°optical hybrid is suitable well for realizing miniaturization,high-properties,and high bandwidth of coherent receiver.
文摘Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.
文摘With the worldwide rise in electric vehicles, the demand for lithium batteries is increasing day by day. In 2015, China's new energy vehicles developed rapidly, and the price of lithium carbonate rose from fifty or sixty thousand yuan per ton to 150 thousand yuan. In the past, lithium was often extracted from spodumene (LiAlSi2O6), which is time consuming, laborious and expensive. Over the past decade, abundant lithium has been discovered in brackish and salt water lakes, which is an important way to obtain lithium resources.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
基金supported by the National Natural Science Foundation of China(11172304 and 11021262)the National Basic Research Program of China (2012CB937500)
文摘A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.