In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering...In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.展开更多
Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the variou...Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the various technologies to tackle these problems,interface dipole engineering (IDE) is an effective method to improve the performance,particularly,modulating the effective work function (EWF) of metal gates.Because of the different electronegativity of the various atoms in the interfacial layer,a dipole layer with an electric filed can be formed altering the band alignment in the MOS stack.This paper reviews the interface dipole formation induced by different elements,recent progresses in metal gate/high-k MOS stacks with IDE on EWF modulation,and mechanism of IDE.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Fundamental Research Funds for the Central Universities (Grant No. 20110203110012)
文摘In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.
基金supported by the National Natural Science Foundation of China(51172009,51172013 and 11074020)Program for New Century Excellent Talents in University(NCET-08-0029)+1 种基金Hong Kong Research Grants Council(RGC)General Research Funds(GRF)(CityU112510)City University of Hong Kong Strategic Research Grant(SRG)(7008009)
文摘Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the various technologies to tackle these problems,interface dipole engineering (IDE) is an effective method to improve the performance,particularly,modulating the effective work function (EWF) of metal gates.Because of the different electronegativity of the various atoms in the interfacial layer,a dipole layer with an electric filed can be formed altering the band alignment in the MOS stack.This paper reviews the interface dipole formation induced by different elements,recent progresses in metal gate/high-k MOS stacks with IDE on EWF modulation,and mechanism of IDE.