Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past...The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.展开更多
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not m...Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes.In the present study,a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism.The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.The Schottky junction accelerates and decelerates the diffusion of OH-/K+ions during the charging and discharging processes,respectively,to improve the pseudocapacitive behavior.The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g^(-1)at 2 A g^(-1)matches almost that of the positive electrode’s 2,795 C g^(-1)at 3 A g^(-1).As a result,with the equivalent contribution from the positive and negative electrodes,an energy density of 236.1 Wh kg^(-1)is achieved at a power density of 921.9 W kg^(-1)with a total active mass of 15 mg cm-2.This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density,thus,offering a route for further advances in electrochemical energy storage and conversion processes.展开更多
Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond ...Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations.展开更多
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate...The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.展开更多
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo...Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional...The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional to the molar ratio of F to C atoms(F/C).In this study,B-doped graphene(BG)is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CF_(x).The B-doping enhances the F/C ratio of CF_(x)without hindering the electrochemical activity of the C–F bond.During the fluorination process,B-containing functional groups are removed from the graphene lattice.This facilitates the formation of a defect-rich graphene matrix,which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+storage.The prepared CF_(x)exhibits the maximum specific capacity of 1204 mAh g^(−1),which is 39.2%higher than that of CF_(x)obtained directly from graphene oxide(without B-doping).An unprecedented energy density of 2974 Wh kg^(−1)is achieved for the asprepared CF_(x)samples,which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite(2180 Wh kg^(−1)).Therefore,this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CF_(x)cathodes for practical applications.展开更多
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform a...Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.展开更多
The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achi...The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries.展开更多
Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing amm...Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density.展开更多
This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy muc...This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.展开更多
Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density an...Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density and poor rate-capability.Herein,we propose a novel Sb_(64)Cu_(36)cathode that effectively tackles these issues.The Sb_(64)Cu_(36)(melting point:525℃) cathode presents a novel lithiation mechanism involving sequentially the generation of Li_(2)CuSb,the formation of Li_(3)Sb,and the conversion reaction of Li_(2)CuSb to Li_(3)Sb and Cu.The generated intermetallic compounds show a unique microstructure of the upper floated Li_(2)CuSb layer and the below cross-linked structure with interpenetrated Li_(2)CuSb and Li_(3)Sb phases.Compared with Li_(3)Sb,the lower Li migration energy barrier(0.188 eV) of Li_(2)CuSb significantly facilitates the lithium diffusion across the intermediate compounds and accelerates the reaction kinetics.Consequently,the Li‖Sb_(64)Cu_(36)cell delivers a more excellent electrochemical performance(energy density:353 W h kg^(-1)at 0.4 A cm^(-2);rate capability:0.59 V at 2.0 A cm^(-2)),and a much lower energy storage cost of only 38.45 $ kW h^(-1)than other previously reported Sb-based LMBs.This work provides a novel cathode design concept for the development of high-performance LMBs in applications for large-scale energy storage.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
文摘The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.
基金financially supported by the National Research Foundation of Korea(NRF-2022R1A2C2010803)。
文摘Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes.In the present study,a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism.The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.The Schottky junction accelerates and decelerates the diffusion of OH-/K+ions during the charging and discharging processes,respectively,to improve the pseudocapacitive behavior.The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g^(-1)at 2 A g^(-1)matches almost that of the positive electrode’s 2,795 C g^(-1)at 3 A g^(-1).As a result,with the equivalent contribution from the positive and negative electrodes,an energy density of 236.1 Wh kg^(-1)is achieved at a power density of 921.9 W kg^(-1)with a total active mass of 15 mg cm-2.This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density,thus,offering a route for further advances in electrochemical energy storage and conversion processes.
基金supported by the National Natural Science Foundation of China(52072061)21C Innovation Laboratory,Contemporary Amperex Technology Ltd.by project No.21C–OP–202103。
文摘Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations.
基金the support of the instrument and equipment fund of the Key Laboratory of Special Energy,Ministry of Education,Nanjing University of Science and Technology,China.
文摘The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.
基金financially supported by the National Key Research and Development Program of China(2022YFB4002103)the National Natural Science Foundation of China(22279107)。
文摘Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金financialy supported by the State Key Program of National Natural Science Foundation of China(no.52130303)the National Natural Science Foundation of China(no.51773147 and 51973151)
文摘The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional to the molar ratio of F to C atoms(F/C).In this study,B-doped graphene(BG)is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CF_(x).The B-doping enhances the F/C ratio of CF_(x)without hindering the electrochemical activity of the C–F bond.During the fluorination process,B-containing functional groups are removed from the graphene lattice.This facilitates the formation of a defect-rich graphene matrix,which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+storage.The prepared CF_(x)exhibits the maximum specific capacity of 1204 mAh g^(−1),which is 39.2%higher than that of CF_(x)obtained directly from graphene oxide(without B-doping).An unprecedented energy density of 2974 Wh kg^(−1)is achieved for the asprepared CF_(x)samples,which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite(2180 Wh kg^(−1)).Therefore,this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CF_(x)cathodes for practical applications.
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
基金the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central UniversitiesChina University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.
基金Agency for Science,Technology and Research for its funding(U21-M1-019AR).
文摘The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF2022R1F1A1062928)supported by the Basic Science Research Capacity Enhancement Project through a grant from the Korea Basic Science Institute(National Research Facilities and Equipment Center)funded by the Ministry of Education(2019R1A6C1010016)。
文摘Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density.
文摘This paper focuses on the characteristics of solutions of nonlinear oscillatory systems in the limit of very high oscillation energy, E;specifically, systems, in which the nonlinear driving force grows with energy much faster for x(t) close to the turning point, a(E), than at any position, x(t), that is not too close to a(E). This behavior dominates important aspects of the solutions. It will be called “nonlinear violence”. In the vicinity of a turning point, the solution of a nonlinear oscillatory systems that is affected by nonlinear violence exhibits the characteristics of boundary-layer behavior (independently of whether the equation of motion of the system can or cannot be cast in the traditional form of a boundary-layer problem.): close to a(E), x(t) varies very rapidly over a short time interval (which vanishes for E → ∞). In traditional boundary layer systems this would be called the “inner” solution. Outside this interval, x(t) soon evolves into a moderate profile (e.g. linear in time, or constant)—the “outer” solution. In (1 + 1)-dimensional nonlinear energy-conserving oscillators, if the solution is reflection-invariant, nonlinear violence determines the characteristics of the whole solution. For large families of nonlinear oscillatory systems, as E → ∞, the solutions for x(t) tend to common, indistinguishable profiles, such as periodic saw-tooth profiles or step-functions. If such profiles are observed experimentally in high-energy oscillations, it may be difficult to decipher the dynamical equations that govern the motion. The solution of motion in a central field with a non-zero angular momentum exhibits extremely fast rotation around a turning point that is affected by nonlinear violence. This provides an example for the possibility of interesting phenomena in (1 + 2)-dimensional oscillatory systems.
基金financially supported by the National Natural Science Foundation of China(52074023)the Beijing Natural Science Foundation(2222062)+1 种基金the National Key R&D Program of China(2018YFB0905600)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(FRF-IDRY-21-023)。
文摘Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density and poor rate-capability.Herein,we propose a novel Sb_(64)Cu_(36)cathode that effectively tackles these issues.The Sb_(64)Cu_(36)(melting point:525℃) cathode presents a novel lithiation mechanism involving sequentially the generation of Li_(2)CuSb,the formation of Li_(3)Sb,and the conversion reaction of Li_(2)CuSb to Li_(3)Sb and Cu.The generated intermetallic compounds show a unique microstructure of the upper floated Li_(2)CuSb layer and the below cross-linked structure with interpenetrated Li_(2)CuSb and Li_(3)Sb phases.Compared with Li_(3)Sb,the lower Li migration energy barrier(0.188 eV) of Li_(2)CuSb significantly facilitates the lithium diffusion across the intermediate compounds and accelerates the reaction kinetics.Consequently,the Li‖Sb_(64)Cu_(36)cell delivers a more excellent electrochemical performance(energy density:353 W h kg^(-1)at 0.4 A cm^(-2);rate capability:0.59 V at 2.0 A cm^(-2)),and a much lower energy storage cost of only 38.45 $ kW h^(-1)than other previously reported Sb-based LMBs.This work provides a novel cathode design concept for the development of high-performance LMBs in applications for large-scale energy storage.