Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and...Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents.展开更多
The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ...Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.展开更多
Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ...Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.展开更多
Based on the nonlinear Schr?dinger equation(NLSE) with damping, detuning, and driving terms describing the evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform(NFT) to the study...Based on the nonlinear Schr?dinger equation(NLSE) with damping, detuning, and driving terms describing the evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform(NFT) to the study of signals during the generation of the Kerr optical frequency combs(OFCs). We find that the signals in different states, including the Turing pattern, the chaos, the single soliton state, and the multi-solitons state, can be distinguished according to different distributions of the eigenvalue spectrum. Specially, the eigenvalue spectrum of the single soliton pulse is composed of a pair of conjugate symmetric discrete eigenvalues and the quasi-continuous eigenvalue spectrum with eye-like structure.Moreover, we have successfully demonstrated that the number of discrete eigenvalue pairs in the eigenvalue spectrum corresponds to the number of solitons formed in a round-trip time inside the Kerr microresonator. This work shows that some characteristics of the time-domain signal can be well reflected in the nonlinear domain.展开更多
The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem,...The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR).展开更多
A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new ...A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.展开更多
On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency di...On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.展开更多
In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several over...In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.展开更多
To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a hi...To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).展开更多
A new method is proposed in this paper for simultaneous frequency and direction estimation of coherent signals. The method is based on the rotational invariance techniques and uses an array triplet in motion to estima...A new method is proposed in this paper for simultaneous frequency and direction estimation of coherent signals. The method is based on the rotational invariance techniques and uses an array triplet in motion to estimate the central frequencies and azimuths of coherent signals from narrowband sources. Without searching in the space of frequency-direction, the computational efficiency of the method is improved significantly. Simulation resultsin the typical examples demonstrate the performance of this new method.展开更多
In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signal...In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively.展开更多
In order to search for the seismic wave characteristics of low frequency signals in the Alxa Left Banner region,Inner Mongolia,the low frequency signals of seismic wave data are extracted from the earthquakes of MS5. ...In order to search for the seismic wave characteristics of low frequency signals in the Alxa Left Banner region,Inner Mongolia,the low frequency signals of seismic wave data are extracted from the earthquakes of MS5. 8 in 2015 and MS5. 0 in 2016 in this area. The results show that:① Before the MS5. 8 earthquake,the seismic stations located near the epicenter in Wuhai,Dongshengmiao,and Shizuishan recorded seismic waves that showed the phenomenon of spectrum shift from high to low frequency.② The low frequency signals recorded by different stations have obvious difference.③ According to the data recorded by the station closest to the epicenter,low-frequency signals were recorded about120 hours before the earthquake and had obvious anomalies. This may reflect slow slip before the earthquake.展开更多
A method for evaluating the benign and malignant breast tumors based on radio?frequency(RF)data was explored by extracting the characteristic parameters of breast ultrasound RF signals.The breast biopsy data were used...A method for evaluating the benign and malignant breast tumors based on radio?frequency(RF)data was explored by extracting the characteristic parameters of breast ultrasound RF signals.The breast biopsy data were used as the reference data for judging the lump benign or malignant.The extracted ultrasound RF data were reconstructed and segmented by computer aided method to obtain the breast tumor region of interest(ROI)and its characteristic parameters(entropy and standard deviation).The characteristic parameters were statistically analyzed to evaluate the relationship between characteristic parameters and benign or malignant breast tumors.The results indicate the entropy and standard deviation of normal region is much higher than that of lump region,which shows that the standard deviation and entropy characteristic parameters of ultrasonic RF signals are meaningful in the diagnosis of breast tumors.The proposed method provides a new direction for computer?aided diagnosis of benign and malignant breast tumors.展开更多
The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, ...The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金The fund from Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2020SP009the National Basic Research and Development Program of China under contract Nos 2022YFF0802000 and 2022YFF0802004+3 种基金the“Renowned Overseas Professors”Project of Guangdong Provincial Department of Science and Technology under contract No.76170-52910004the Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention under contract No.2022491711the National Natural Science Foundation of China under contract No.51909290the Key Research and Development Program of Guangdong Province under contract No.2020B1111020003.
文摘Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents.
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
基金The author sincerely appreciates the help provided by the research team(Wheel/rail interaction,Vibration and Noise Research Team)and CRRC.In addition,this study has also been supported by Science and Technology Research Plan of China Railway General Corporation(No.P2019J002,N2022J009)China Association of Science and Technology Young Talent Support Project(No.2019QNRC001)+1 种基金National Natural Science Foundation(No.U1934203)Sichuan Science and Technology Program(No.2022NSFSC0469,2023NSFSC0374,2023YFH0049).
文摘Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
文摘Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61922040)Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,China(Grant No.KF201701)the Key R&D Program of Guangdong Province,China(Grant No.2018B030325002)。
文摘Based on the nonlinear Schr?dinger equation(NLSE) with damping, detuning, and driving terms describing the evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform(NFT) to the study of signals during the generation of the Kerr optical frequency combs(OFCs). We find that the signals in different states, including the Turing pattern, the chaos, the single soliton state, and the multi-solitons state, can be distinguished according to different distributions of the eigenvalue spectrum. Specially, the eigenvalue spectrum of the single soliton pulse is composed of a pair of conjugate symmetric discrete eigenvalues and the quasi-continuous eigenvalue spectrum with eye-like structure.Moreover, we have successfully demonstrated that the number of discrete eigenvalue pairs in the eigenvalue spectrum corresponds to the number of solitons formed in a round-trip time inside the Kerr microresonator. This work shows that some characteristics of the time-domain signal can be well reflected in the nonlinear domain.
基金supported by the National Natural Science Foundation of China(61501176)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2016017)
文摘The traditional super-resolution direction finding methods based on sparse recovery need to divide the estimation space into several discrete angle grids, which will bring the final result some error. To this problem, a novel method for wideband signals by sparse recovery in the frequency domain is proposed. The optimization functions are found and solved by the received data at every frequency, on this basis, the sparse support set is obtained, then the direction of arrival (DOA) is acquired by integrating the information of all frequency bins, and the initial signal can also be recovered. This method avoids the error caused by sparse recovery methods based on grid division, and the degree of freedom is also expanded by array transformation, especially it has a preferable performance under the circumstances of a small number of snapshots and a low signal to noise ratio (SNR).
基金the National Natural Science Foundation of China (60272077) the Science Foundation of Aeronautics (02F53030).
文摘A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.
基金Supported by the National Natural Science Foundation of China( 4 990 40 10 )
文摘On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.
文摘In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.
基金supported by the National Natural Science Foundation of China(61901154,41704154)Zhejiang Province Science Foundation for Youths(LQ19F010006).
文摘To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).
基金Supported by the pre-research fund issued by the China Academy of Electronics & Information Technology. Contract No. 28.5.3.3
文摘A new method is proposed in this paper for simultaneous frequency and direction estimation of coherent signals. The method is based on the rotational invariance techniques and uses an array triplet in motion to estimate the central frequencies and azimuths of coherent signals from narrowband sources. Without searching in the space of frequency-direction, the computational efficiency of the method is improved significantly. Simulation resultsin the typical examples demonstrate the performance of this new method.
基金Supported by the National Natural Science Foundation of China under Grant No. 61078065, Natural Science Foundation of Ningbo City under Grant No. 2008A61009, and K.C. Wong Magna Foundation in Ningbo University
文摘In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively.
基金the Major Scientific andTechnical Project of Department of Science and Technology,Inner Mongolia in 2016(Strong Earthquake Track in the Short Stage and Integration Innovation of Stereoscopic Observation Technology in Space and Ground)
文摘In order to search for the seismic wave characteristics of low frequency signals in the Alxa Left Banner region,Inner Mongolia,the low frequency signals of seismic wave data are extracted from the earthquakes of MS5. 8 in 2015 and MS5. 0 in 2016 in this area. The results show that:① Before the MS5. 8 earthquake,the seismic stations located near the epicenter in Wuhai,Dongshengmiao,and Shizuishan recorded seismic waves that showed the phenomenon of spectrum shift from high to low frequency.② The low frequency signals recorded by different stations have obvious difference.③ According to the data recorded by the station closest to the epicenter,low-frequency signals were recorded about120 hours before the earthquake and had obvious anomalies. This may reflect slow slip before the earthquake.
基金financially supported by the National Natural Science Foundation of China (No. 61703201)the National Natural Science Foundation of Jiangsu Province (No. BK20170765)
文摘A method for evaluating the benign and malignant breast tumors based on radio?frequency(RF)data was explored by extracting the characteristic parameters of breast ultrasound RF signals.The breast biopsy data were used as the reference data for judging the lump benign or malignant.The extracted ultrasound RF data were reconstructed and segmented by computer aided method to obtain the breast tumor region of interest(ROI)and its characteristic parameters(entropy and standard deviation).The characteristic parameters were statistically analyzed to evaluate the relationship between characteristic parameters and benign or malignant breast tumors.The results indicate the entropy and standard deviation of normal region is much higher than that of lump region,which shows that the standard deviation and entropy characteristic parameters of ultrasonic RF signals are meaningful in the diagnosis of breast tumors.The proposed method provides a new direction for computer?aided diagnosis of benign and malignant breast tumors.
文摘The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.