期刊文献+
共找到7,012篇文章
< 1 2 250 >
每页显示 20 50 100
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
1
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 high energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:3
2
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis 被引量:1
3
作者 Zhimin Li Xianjing Feng +8 位作者 Shixing Luo Yanfeng Ding Zhi Zhang Yifeng Shang Doudou Lei Jinhong Cai Jinmin Zhao Li Zheng Ming Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第4期109-123,共15页
Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modi... Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy. 展开更多
关键词 Sephadex microsphere Hydrophobic modification Drug delivery system high drug loading ratio OSTEOARTHRITIS
下载PDF
Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries 被引量:1
4
作者 Weiming Xiong Jiande Lin +6 位作者 Huiqun Wang Sha Li Junhao Wang Yuxiang Mao Xiao Zhan De-Yin Wu Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期492-501,I0011,共11页
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele... The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics. 展开更多
关键词 Lithium-sulfur battery MnS-MoS_(2)heterojunction Built-in electric field Sulfur reaction kinetics high sulfur loading
下载PDF
Defect engineering of high-loading single-atom catalysts for electrochemical carbon dioxide reduction 被引量:1
5
作者 Yang Li Zhenjiang He +3 位作者 Feixiang Wu Shuangyin Wang Yi Cheng Sanping Jiang 《Materials Reports(Energy)》 2023年第2期124-141,I0003,共19页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed. 展开更多
关键词 Single-atom catalysts high loading ELECTROCATALYSIS Carbon dioxide reduction(CO_(2)RR) Transition metals
下载PDF
Spalling characteristics of high-temperature treated granitic rock at different strain rates
6
作者 L.F.Fan Q.H.Yang X.L.Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1280-1288,共9页
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen... The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate. 展开更多
关键词 Dynamic spalling characteristics high temperature Strain rate Dynamic loading GRANITE
下载PDF
EFFECT OF TIP CLEARANCE ON PERFORMANCE AND FLOW FIELD OF SMALL SIZED HIGH SPEED CENTRIFUGAL FAN 被引量:2
7
作者 曹人靖 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第4期329-334,共6页
A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to... A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance. 展开更多
关键词 small sized high speed centrifugal fan tip clearance flow field analysis
下载PDF
Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts 被引量:8
8
作者 Wenyu Zhang Shuquan Liang +2 位作者 Guozhao Fang Yongqiang Yang Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期215-226,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ... Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1. 展开更多
关键词 Aluminum VANADATE GRAPHENE CATHODE high mass loadING AQUEOUS zinc-ion BATTERY
下载PDF
Towards full demonstration of high areal loading sulfur cathode in lithium–sulfur batteries 被引量:15
9
作者 Long Kong Qi Jin +5 位作者 Xi-Tian Zhang Bo-Quan Li Jin-Xiu Chen Wan-Cheng Zhu Jia-Qi Huang Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期17-22,共6页
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi... Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery. 展开更多
关键词 Lithium sulfur batteries high areal sulfur loading Lithium anode protection Sulfur redox reactions Polysulfide interm ediates
下载PDF
Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium–sulfur batteries 被引量:4
10
作者 Masud Rana Ming Li +4 位作者 Qiu He Bin Luo Lianzhou Wang Ian Gentle Ruth Knibbe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期51-60,共10页
Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5... Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5×10^-30S cm^-1),associated lithium polysulfides(PSs),and their migration from the cathode to the anode.In this study,a separator coated with a Ketjen black(KB)/Nafion composite was used in an LSB with a sulfur loading up to 7.88 mg cm^-2to mitigate the PS migration.A minimum specific capacity(Cs)loss of 0.06%was obtained at 0.2 C-rate at a high sulfur loading of 4.39 mg cm^-2.Furthermore,an initial areal capacity up to 6.70 mAh cm^-2 was obtained at a sulfur loading of 7.88 mg cm^-2.The low Cs loss and high areal capacity associated with the high sulfur loading are attributed to the large surface area of the KB and sulfonate group(SO3^-)of Nafion,respectively,which could physically and chemically trap the PSs. 展开更多
关键词 Lithium-sulfur battery SEPARATOR coating PHYSICAL and CHEMICAL confinement Self-discharge high SULFUR loading Specific capacity loss high areal capacity
下载PDF
CNT/High Mass Loading MnO2/Graphene-Grafted Carbon Cloth Electrodes for High-Energy Asymmetric Supercapacitors 被引量:4
11
作者 Lulu Lyu Kwang-dong Seong +6 位作者 Jong Min Kim Wang Zhang Xuanzhen Jin Dae Kyom Kim Youngmoo Jeon Jeongmin Kang Yuanzhe Piao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期549-560,共12页
Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport.Herein,rationally designed CNT... Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport.Herein,rationally designed CNT/MnO2/graphene-grafted carbon cloth electrodes are prepared by a“graft-deposit-coat”strategy.Due to the large surface area and good conductivity,graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO2(9.1 mg cm?2)and facilitates charge transfer.Meanwhile,the nanostructured MnO2 provides abundant electroactive sites and short ion transport distance,and CNT coated on MnO2 acts as interconnected conductive“highways”to accelerate the electron transport,significantly improving redox reaction kinetics.Benefiting from high mass loading of electroactive materials,favorable conductivity,and a porous structure,the electrode achieves large areal capacitances without compromising rate capability.The assembled asymmetric supercapacitor demonstrates a wide working voltage(2.2 V)and high energy density of 10.18 mWh cm?3. 展开更多
关键词 high mass loading Flexible PSEUDOCAPACITOR Voltage WINDOW Energy density
下载PDF
Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading 被引量:18
12
作者 YIN Zhi-qiang LI Xi-bing +2 位作者 JIN Jie-fang HE Xian-qun DU Kun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期175-184,共10页
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st... The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress. 展开更多
关键词 high stress coupled static and dynamic loading impact disturbance high-speed photography
下载PDF
Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading 被引量:5
13
作者 Wang Jiaojiao Shi Gang Shi Yongjiu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期611-622,共12页
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di... To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases. 展开更多
关键词 high strength steel width-to-thickness ratio axial load ratio seismic behavior I-section column
下载PDF
Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns 被引量:9
14
作者 卢亦焱 李娜 +1 位作者 李杉 梁鸿骏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2287-2296,共10页
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ... An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures. 展开更多
关键词 concrete-filled steel tube (CFST) zolumns steel fiber high strength concrete axial load DUCTILITY load capacity
下载PDF
High-precision solution to the moving load problem using an improved spectral element method 被引量:3
15
作者 Shu-Rui Wen Zhi-Jing Wu Nian-Li Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期68-81,共14页
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t... In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases. 展开更多
关键词 Moving load Spectral element method Improved function Dynamic response high precision
下载PDF
Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak 被引量:3
16
作者 刘亮 刘甫坤 +1 位作者 单家芳 匡光力 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第2期223-226,共4页
In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic win... In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level. 展开更多
关键词 water load high power LHCD
下载PDF
Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets 被引量:8
17
作者 Shouzheng Zhang Ning Zhong +5 位作者 Xing Zhou Mingjie Zhang Xiangping Huang Xuelin Yang Ruijin Meng Xiao Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期70-82,共13页
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architec... The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved. 展开更多
关键词 MXene nanosheet high sulfur areal loading INTERLAYER Lithium–sulfur battery
下载PDF
Controllable synthesis of high loading LiFePO_4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes 被引量:2
18
作者 Fei Cheng Duo Li +1 位作者 Anhui Lu Wencui Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期907-913,共7页
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of ... Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion. 展开更多
关键词 LIFEPO4 high loading fast ion diffusion high rate performance lithium-ion batteries
下载PDF
A multi-functional binder for high loading sulfur cathode 被引量:3
19
作者 Ying Chu Ning Chen +3 位作者 Ximing Cui Anmin Liu Liang Zhen Qinmin Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期99-104,I0004,共7页
Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effec... Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effectively addressed by using a mussel-inspired binder comprised of chitosan grafted with catecholic moiety for sulfur cathodes.The resulting sulfur cathodes possess a high loading up to 12.2 mg cm-2 but also exhibit one of the best electrochemical properties among their counterparts.The excellent performances are attributed to the strong adhesion of the binder to sulfur particles,conducting agent,current collector,and polysulfide.The versatile adhesion effectively increases the sulfur loading,depresses the shuttle effect,and alleviates mechanical pulverization during cycling processes.The present investigation offers a new insight into high performance sulfur cathodes through a bio-adhesion viewpoint. 展开更多
关键词 Li-S batteries Sulfur cathode Mussel-inspired binder Bio-adhesion high loading high performance
下载PDF
Soldiers' load carriage performance in high mountains: a physiological study 被引量:2
20
作者 Tirthankar Chatterjee Debojyoti Bhattacharyya +3 位作者 Anilendu Pramanik Madhusudan Pal Deepti Majumdar Dhurjati Majumdar 《Military Medical Research》 SCIE CAS 2017年第3期132-140,共9页
Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen c... Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.Methods: Twelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5km/h and 3.5km/h speeds during carrying no loads and three magnitudes of load(10.7kg, 21.4kg, 30kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption(VO2max) was measured at sea level and the two high altitudes, and respective relative workloads(% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.Results: The participants had significant reductions in VO2 max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5km/h at the two high altitudes.Conclusions: Considering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes. Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight. 展开更多
关键词 load carriage high altitude Walking speed Physiological responses
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部