A new method is presented in this paper for fitting VFC*ss (voltage to frequency converter) output functions by using high order neural networks. The nonlinear estimation is implemented when the VFC110 is used at a...A new method is presented in this paper for fitting VFC*ss (voltage to frequency converter) output functions by using high order neural networks. The nonlinear estimation is implemented when the VFC110 is used at a full scale output frequency of 4 MHz. Two kinds of on line dynamic calibrating circuits are designed to improve the sampling precision. This method can also be applied to different industrial applications.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequenc...A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.展开更多
An improved particle swarm optimization(PSO)algorithm based on dynamic inertia weight and adjustment coefficient is proposed in this paper.The expressions of inertia weight and adjustment coefficient are established b...An improved particle swarm optimization(PSO)algorithm based on dynamic inertia weight and adjustment coefficient is proposed in this paper.The expressions of inertia weight and adjustment coefficient are established based on inter-particle distance and iterations.The improved algorithm is applied to a novel two-stage photovoltaic(PV)converter.The later DC/AC circuit chooses a dual-DC-input multi-level dual-buck inverter.This converter has the advantages of no shoot-through problem and high efficiency.Finally,the validity and effectiveness of the algorithm and the converter are verified with experimental results.展开更多
This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to c...This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.展开更多
This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also p...This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are construc...According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive ...This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.展开更多
The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predic...The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.展开更多
We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretiz...We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.展开更多
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional cal...In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been c...The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.展开更多
Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-po...Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcco...Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.展开更多
Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to...Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.展开更多
文摘A new method is presented in this paper for fitting VFC*ss (voltage to frequency converter) output functions by using high order neural networks. The nonlinear estimation is implemented when the VFC110 is used at a full scale output frequency of 4 MHz. Two kinds of on line dynamic calibrating circuits are designed to improve the sampling precision. This method can also be applied to different industrial applications.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
文摘A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.
文摘An improved particle swarm optimization(PSO)algorithm based on dynamic inertia weight and adjustment coefficient is proposed in this paper.The expressions of inertia weight and adjustment coefficient are established based on inter-particle distance and iterations.The improved algorithm is applied to a novel two-stage photovoltaic(PV)converter.The later DC/AC circuit chooses a dual-DC-input multi-level dual-buck inverter.This converter has the advantages of no shoot-through problem and high efficiency.Finally,the validity and effectiveness of the algorithm and the converter are verified with experimental results.
文摘This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.
基金supported by the National Natural Science Foundation of China(No.61974116)。
文摘This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Sponsored by the National Natural Sciences Foundation of China(Grant No.61201227)
文摘According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
文摘This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.
基金The National Natural Science Foundation of China under contract No.51979165。
文摘The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.
文摘We present a high-order Galerkin method in both space and time for the 1D unsteady linear advection-diffusion equation. Three Interior Penalty Discontinuous Galerkin (IPDG) schemes are detailed for the space discretization, while the time integration is performed at the same order of accuracy thanks to an Arbitrary high order DERivatives (ADER) method. The orders of convergence of the three ADER-IPDG methods are carefully examined through numerical illustrations, showing that the approach is consistent, accurate, and efficient. The numerical results indicate that the symmetric version of IPDG is typically more accurate and more efficient compared to the other approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177117)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
文摘In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
文摘The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.
基金supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
文摘Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.
文摘Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.