The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass ...The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.展开更多
The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con...The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.展开更多
KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m)...KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m), high pressure (74.5MPa) and pressure coefficient (2.022). Gas reservoirs with a pressure coefficient of over 2.0 are not commonly found. The abnormal high-pressure reservoirs are quite different in characteristic and performance during the process of depletion exploitation. Therefore, it is necessary to know the property of pressure sensitivity for this abnormal high-pressure reservoir. The aim of this paper is to test the reservoir pressure sensitivity and to analyze its effect on the deliverability of gas. Through some experiments, the permeability change with the confining pressure of rock samples from KeLa-2 abnormal high-pressure gas reservoir is measured. A power function is used to match the measured data, and to derive an empirical equation to describe the change of permeability through the change of the reservoir pressure or effective overburden pressure. Considering the permeability change during the development of reservoirs, a conventional deliverability equation is modified, and the deliverability curve for KeLa-2 gas reservoir is predicted. The research indicates that the extent of the pressure sensitivity of rock samples from KeLa-2 is higher than that from the Daqing oilfield. KeLa-2 reservoir rock has the feature of an undercompaction state. The pressure sensitivity of a reservoir may decrease the well deliverability. It is concluded that for KeLa-2 reservoir the predicted absolute open flow (AOF), when the pressure sensitivity is taken into account, is approximately 70% of the AOF when permeability is constant and does not change with pressure.展开更多
Ying-Qiong Basin in the west of South China Sea contains plenty of abnormal high-pressure gas reservoirs, whose stress sensitivity is crucial for well productivity. To explore the influence of stress sensitivity on pr...Ying-Qiong Basin in the west of South China Sea contains plenty of abnormal high-pressure gas reservoirs, whose stress sensitivity is crucial for well productivity. To explore the influence of stress sensitivity on production, the variable outlet back pressure stress sensitivity experiments were applied to test core sample permeability under different burden pressure and obtain the relational expression of power function of core stress sensitivity. Afterwards, new productivity equation is deduced in consideration of reservoir stress sensitivity, and the affection of stress sensitivity on production is analyzed. The result demonstrates close link between stress sensitivity and productivity, since single well production decreases dramatically when reservoir stress sensitivity has been taken into account. This research is constructive for well-testing data interpretation in stress sensitive gas reservoirs.展开更多
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s...Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres...Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.展开更多
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin...Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.展开更多
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The ...The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×10^4 to 1.11×10^6 K/s.展开更多
The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of h...The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.展开更多
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease...Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement.展开更多
Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pre...Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.展开更多
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ...The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.展开更多
Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as l...Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
A large data bank of more than 700 gas-condensate samples collected from literature and experiments was established.On this basis,empirical correlations and equations of state commonly used to calculate dew-point pres...A large data bank of more than 700 gas-condensate samples collected from literature and experiments was established.On this basis,empirical correlations and equations of state commonly used to calculate dew-point pressure(DPP)were evaluated.A new model for estimating DPP was proposed.All the empirical correlations and the Peng-Robinson state equation were compared,and sensitivity of parameters was analyzed.The current standards used to identify gas condensate were evaluated and found to be not accurate enough.The Peng-Robinson state equation has no unique solution and is affected by multiple factors such as the characterization of C7+components and the splitting scheme.The Nemeth-Kennedy correlation has the highest accuracy when applied to the data bank established in this study,followed by Elsharkawy correlation and Godwin correlation.While Shokir correlation cannot be used for samples without C7+components,it is therefore the lowest in accuracy.The newly proposed model has an average absolute error,root mean square error and coefficient of determination of 7.5%,588,and 0.87,respectively,and is better than the above four correlations statistically.The proposed model proved to be more accurate and valid when compared to experimental results and simulation with the Peng-Robinson state equation.展开更多
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve...Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.展开更多
The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion prod...The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion production was tested on single cores and multi-core series by using self-developed shale gas fluid-solid coupling experiment system.The adsorption and desorption laws were summarized and a high pressure isothermal adsorption model was established.The calculation formula of gas content was corrected,and the producing law of adsorption gas was determined.The study results show that the isothermal adsorption law of the shale reservoir under high pressure was different from the conventional low pressure.The high pressure isothermal adsorption curve had the maximum value in excess adsorption with pressure change,and the corresponding pressure was the critical desorption pressure.The high pressure isothermal curve can be used to evaluate the amount of adsorbed gas and the producing degree of adsorption gas.The high pressure isothermal adsorption model can fit and characterize the high pressure isothermal adsorption law of shale.The modified gas content calculation method can evaluate the gas content and the proportion of adsorbed gas more objectively,and is the theoretical basis of reserve assessment and production decline analysis.The producing degree of adsorption gas is closely related to the pressure,only when the reservoir pressure is lower than the critical desorption pressure,the adsorption gas can be produced effectively.In the process of gas well production,the pressure drop in the near-well area is large,the production of adsorption gas is high;away from the wellbore,the adsorption gas is low in production,or no production.展开更多
Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, for...Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, formation pressure coefficient is up to 2.1;Yinggehai Basin is a fomous high-temperature overpressure basin.YinggehaiBasin’s in-depth, especially high-temperature overpressure stratum has numerous large-scale exploration goals. As a result of high-temperature overpressure basin’s perplexing geological conditions and geophysical analysis technical limitations, this field of gas exploration can’t be carried out effectively, which affects the process of gas exploration seriously. A pressure prediction model of the high-temperature overpressure basin in different structural positions is summed up by pressure forecast pattern research in recent years, which can be applied to target wells pre-drilling pressure prediction and post drilling pressure analysis of Yinggehai Basin. The model has small erroneous and high rate of accuracy. The Yinggehai Basin A well drilling is successful in 2010, and gas is discovered in high-temperature overpressure stratum, which proved that reservoir can be found in high-temperature overpressure stratum. It is a great theoretical breakthrough of reservoir knowledge.展开更多
基金This work has been conducted as part of the HYBRIT research project RP-1.This research was financially supported by the Swedish Energy Agency(Grant No.42684e2).
文摘The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.
基金supported by the Swedish Energy Agency(Grant Nos.42684-2,P2022-00209).
文摘The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.
文摘KeLa-2 gas reservoir is the largest uncompartimentalized gas field so far discovered in China, with a reserve of hundreds of billions of cubic meters of dry gas. It has such features as extremely long interval (550m), high pressure (74.5MPa) and pressure coefficient (2.022). Gas reservoirs with a pressure coefficient of over 2.0 are not commonly found. The abnormal high-pressure reservoirs are quite different in characteristic and performance during the process of depletion exploitation. Therefore, it is necessary to know the property of pressure sensitivity for this abnormal high-pressure reservoir. The aim of this paper is to test the reservoir pressure sensitivity and to analyze its effect on the deliverability of gas. Through some experiments, the permeability change with the confining pressure of rock samples from KeLa-2 abnormal high-pressure gas reservoir is measured. A power function is used to match the measured data, and to derive an empirical equation to describe the change of permeability through the change of the reservoir pressure or effective overburden pressure. Considering the permeability change during the development of reservoirs, a conventional deliverability equation is modified, and the deliverability curve for KeLa-2 gas reservoir is predicted. The research indicates that the extent of the pressure sensitivity of rock samples from KeLa-2 is higher than that from the Daqing oilfield. KeLa-2 reservoir rock has the feature of an undercompaction state. The pressure sensitivity of a reservoir may decrease the well deliverability. It is concluded that for KeLa-2 reservoir the predicted absolute open flow (AOF), when the pressure sensitivity is taken into account, is approximately 70% of the AOF when permeability is constant and does not change with pressure.
文摘Ying-Qiong Basin in the west of South China Sea contains plenty of abnormal high-pressure gas reservoirs, whose stress sensitivity is crucial for well productivity. To explore the influence of stress sensitivity on production, the variable outlet back pressure stress sensitivity experiments were applied to test core sample permeability under different burden pressure and obtain the relational expression of power function of core stress sensitivity. Afterwards, new productivity equation is deduced in consideration of reservoir stress sensitivity, and the affection of stress sensitivity on production is analyzed. The result demonstrates close link between stress sensitivity and productivity, since single well production decreases dramatically when reservoir stress sensitivity has been taken into account. This research is constructive for well-testing data interpretation in stress sensitive gas reservoirs.
基金the Major Science and Technology Project of Southwest Oil and Gas Field Company(2022ZD01-02).
文摘Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金Supported by PetroChina Science and Technology Project(2021DJ0202).
文摘Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.
基金Project(50975093)supported by the National Natural Science Foundation of ChinaProject(08-0209)supported by New Century Excellent Talent in University,Ministry of Education,ChinaProject(2009ZM0283)supported by the Fundamental Research Funds for the Central Universities,China
文摘Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.
基金Project(51471035)supported by the National Natural Science Foundation of China
文摘The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy(HEA) powders was investigated. The spherical HEA powders(D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×10^4 to 1.11×10^6 K/s.
基金supported by National Natural Science Foundation of China (Grant No. 50575202)
文摘The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.
基金The Shandong Joint Funds of National Natural Science Foundation of China under contract No.U2006213the Fundamental Research Funds for the Central Universities under contract No.201962011the Grant of Laboratory for Marine Geology,Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.MGQNLM-KF201804。
文摘Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement.
基金Supported by National Natural Science Foundation of China (Grant Nos.51175740,51275473)Ph D Programs Foundation of Ministry of Education of China (Grant No.20103317110002)National Key Basic Research Program of China (973 Program,Grant No.2014CB046404)
文摘Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.
基金financial support from the Major Subject of National Science and Technology (2011ZX05032-001)the Fundamental Research Funds for the Central Universities(NO.11CX06022A)
文摘The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.
基金Project(2017QHZ031)supported by Scientific Research Starting Project of Southwest Petroleum University,ChinaProject(18TD0013)supported by Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and Its Applications,ChinaProject(2017CXTD02)supported by Youth Science and Technology Innovation Team of Southwest Petroleum University for Nonlinear Systems,China。
文摘Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金Supported by the Kuwait University(Research Grant No.GE 01/17)through the Petroleum Fluid Research Center(PFRC)
文摘A large data bank of more than 700 gas-condensate samples collected from literature and experiments was established.On this basis,empirical correlations and equations of state commonly used to calculate dew-point pressure(DPP)were evaluated.A new model for estimating DPP was proposed.All the empirical correlations and the Peng-Robinson state equation were compared,and sensitivity of parameters was analyzed.The current standards used to identify gas condensate were evaluated and found to be not accurate enough.The Peng-Robinson state equation has no unique solution and is affected by multiple factors such as the characterization of C7+components and the splitting scheme.The Nemeth-Kennedy correlation has the highest accuracy when applied to the data bank established in this study,followed by Elsharkawy correlation and Godwin correlation.While Shokir correlation cannot be used for samples without C7+components,it is therefore the lowest in accuracy.The newly proposed model has an average absolute error,root mean square error and coefficient of determination of 7.5%,588,and 0.87,respectively,and is better than the above four correlations statistically.The proposed model proved to be more accurate and valid when compared to experimental results and simulation with the Peng-Robinson state equation.
基金funded by the National Basic Research Program of China (No. 2015CB251201)the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606401)+3 种基金the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13)the Major National Science and Technology Programs (No. 016ZX05024-001-002)the Natural Science Foundation of Hainan (No. ZDYF2016215)Key Science and Technology Foundation of Sanya (Nos. 2017PT13, 2017PT2014)
文摘Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.
基金Supported by China National Science and Technology Major Project(2017ZX05037-001)the "13th Five-Year Plan" National Demonstration Project(2016ZX05062-002-001)
文摘The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion production was tested on single cores and multi-core series by using self-developed shale gas fluid-solid coupling experiment system.The adsorption and desorption laws were summarized and a high pressure isothermal adsorption model was established.The calculation formula of gas content was corrected,and the producing law of adsorption gas was determined.The study results show that the isothermal adsorption law of the shale reservoir under high pressure was different from the conventional low pressure.The high pressure isothermal adsorption curve had the maximum value in excess adsorption with pressure change,and the corresponding pressure was the critical desorption pressure.The high pressure isothermal curve can be used to evaluate the amount of adsorbed gas and the producing degree of adsorption gas.The high pressure isothermal adsorption model can fit and characterize the high pressure isothermal adsorption law of shale.The modified gas content calculation method can evaluate the gas content and the proportion of adsorbed gas more objectively,and is the theoretical basis of reserve assessment and production decline analysis.The producing degree of adsorption gas is closely related to the pressure,only when the reservoir pressure is lower than the critical desorption pressure,the adsorption gas can be produced effectively.In the process of gas well production,the pressure drop in the near-well area is large,the production of adsorption gas is high;away from the wellbore,the adsorption gas is low in production,or no production.
文摘Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, formation pressure coefficient is up to 2.1;Yinggehai Basin is a fomous high-temperature overpressure basin.YinggehaiBasin’s in-depth, especially high-temperature overpressure stratum has numerous large-scale exploration goals. As a result of high-temperature overpressure basin’s perplexing geological conditions and geophysical analysis technical limitations, this field of gas exploration can’t be carried out effectively, which affects the process of gas exploration seriously. A pressure prediction model of the high-temperature overpressure basin in different structural positions is summed up by pressure forecast pattern research in recent years, which can be applied to target wells pre-drilling pressure prediction and post drilling pressure analysis of Yinggehai Basin. The model has small erroneous and high rate of accuracy. The Yinggehai Basin A well drilling is successful in 2010, and gas is discovered in high-temperature overpressure stratum, which proved that reservoir can be found in high-temperature overpressure stratum. It is a great theoretical breakthrough of reservoir knowledge.