Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t...Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.展开更多
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve...The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.展开更多
A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, ...A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.展开更多
An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, ...An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%-111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.展开更多
The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuter...The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuterference, measurements were acquired in both middle and high resolution modes. The matrix effects due to the presence of excess HCl and zinc were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits ranged from 0.02μg/ g to 6 μg/ g depending on the elements. The experimental resalts for the determination of Na, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Mo, Cd, Sb and Pb in several high purity zinc oxide powders were presented.展开更多
In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion ...In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion behavior of high-purity Mg-Al alloys is strongly related to changes in the microstructure,including theβphase and Al-Mn or Al-Fe phases,and the protectiveness of the surface film according to the Al content and processing history.In the as-cast alloys,the corrosion rate increased due to the increase ofβphase as the Al content increased,but in the as-extruded alloys,the corrosion rate,which was high due to intermetallic compounds caused by impurities in the low Al alloy,decreased as the Al content increased,and then increased again.This is due to the combined effect of the increase of theβphase and decrease of the impurity effect,and the increase of the dissolved Al content.The results suggest that it is necessary to analyze the effect of alloying elements on the corrosion behavior of pure Mg with information concerning the impurity content and processing history.展开更多
Determination of trace rare earth elements(REEs)in 99. 999% purity yttrium oxide using the inductively coupled plasma mass spectrometric technique (ICPMS) has been developed. Instrumental parameters and factors affeci...Determination of trace rare earth elements(REEs)in 99. 999% purity yttrium oxide using the inductively coupled plasma mass spectrometric technique (ICPMS) has been developed. Instrumental parameters and factors affecitng analytical results have been studied and then optimized.Samples are analyzed directly following an acid digestion without separation or preconcentration and with limit of detection of 0. 003~0. 02 ng/ml, precision of ±5. 4%(cofficient of variation)and recovery of 90~115%. Correction for isobaric interferences from oxide ions and hydroxide ions is made mathematically. Special internal standard procedures are used to compensate drift in metal:metal oxide ratios and sensitivity. The analytical results of several samples are accurate as compared with inductively coupled plasma atomic emission spectrometry (ICPAES) and spark source mass spectrometry (SSMS).展开更多
The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and dur...The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.展开更多
A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nit...A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nitroso 2 naphthol. The matrix effect of cobalt on the absorptions of trace impurities, the effects of reaction time, pH value, dosage of precipitant on the formation of cobalt 1 nitroso 2 naphthol complex, the effects of hydrochloric acid on the stability of this complex and masking of elements were studied. Recoveries of the impurities in spiked sample are from 90% to 110% with a precision of 1.1% 5.0% RSD. The detection limits of the seven elements are in the range of 0.01 0.24μg/g. The method can be applied to the analysis of high purity cobalt metal, cobalt oxide and other cobalt compounds.展开更多
A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was ...A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.展开更多
A new technological process for production of talium tungstate from low-grade tungsten-concentrate witha high content of calcium and other impurities has been studied. The experiments showed that average tungstenleach...A new technological process for production of talium tungstate from low-grade tungsten-concentrate witha high content of calcium and other impurities has been studied. The experiments showed that average tungstenleaching efficiency of more than 96. 92 % can be obtained with a low NaOH consumption by using the mechani-cal activating caustic decomposition , and the content of main impurities (P, As, Si) in Na_2WO_4 solution ob-tained is competitive with that from standard wolframite concentrate by traditional caustic decomposition. Afterrecovering caustic liquor by first crystallization, molylxlenum is removed from Na_2WO_4 solution by ion ex-change method. High-purity sodium tungstate is obtained by second crystallization of Na_2WO_4 solution. Thistechnology has the advantages of good adaptability for raw materials, high removing efficiency of impurities,high tungsten recovery and high economic benefit.展开更多
A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) a...A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise...An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise performance has been realized. All the building blocks are implemented with differential topology except for the off-chip loop filter. To further reduce the phase noise,bonding wires are used to form the resonator in the LC-VCO. The frequency synthesizer operates from 2.39 to 2.72GHz with output power of about 0dBm. The measured closed-loop phase noise is - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from the carrier. The power level of the reference spur is less than - 72dBc. With a 3V power supply, the whole chip including the output buffers consumes 60mA.展开更多
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum...The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.展开更多
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a...Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.展开更多
China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed...China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% .展开更多
High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for...High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.展开更多
TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl-KCl melt under negative pressure. The as-prepared NaCl-KCl-TiClx melt was employed as the electrolyte, and two para...TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl-KCl melt under negative pressure. The as-prepared NaCl-KCl-TiClx melt was employed as the electrolyte, and two parallel crude titanium plates and one high-purity titanium plate were used as the anode and cathode, respectively. A series of electrochemical tests were performed to investigate the influence of electrolytic parameters on the current efficiency and quality of cathodic products. The results indicated that the quality of cathodic products was related to the current efficiency, which is significantly dependent on the current density and the initial concentration of titanium ions. The significance of this study is the attainment of high-purity titanium with a low oxygen content of 30× 10^-6.展开更多
基金Project(22178392)supported by the National Natural Science Foundation of China。
文摘Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.
基金supported by the National Key Research and Development Program of China(2018YFC0604102)the project of China Geological Survey(DD20190015)。
文摘The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.
基金the Natural Science Foundation of Hunan Province, China (No. 05JJ40017).
文摘A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.
基金supported by the Natural Science Foundation of Hunan Province(No.05JJ40017)Education Department of Hunan Province(No.05B064).
文摘An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%-111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.
文摘The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuterference, measurements were acquired in both middle and high resolution modes. The matrix effects due to the presence of excess HCl and zinc were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits ranged from 0.02μg/ g to 6 μg/ g depending on the elements. The experimental resalts for the determination of Na, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Mo, Cd, Sb and Pb in several high purity zinc oxide powders were presented.
基金the main research program of the Korea Institute of Materials Science(Grant No.PNK8150)for financially supporting this study
文摘In this study,the effects of Al addition on the corrosion behavior of pure Mg with controlled impurity contents were systematically analyzed according to the processing history.The results revealed that the corrosion behavior of high-purity Mg-Al alloys is strongly related to changes in the microstructure,including theβphase and Al-Mn or Al-Fe phases,and the protectiveness of the surface film according to the Al content and processing history.In the as-cast alloys,the corrosion rate increased due to the increase ofβphase as the Al content increased,but in the as-extruded alloys,the corrosion rate,which was high due to intermetallic compounds caused by impurities in the low Al alloy,decreased as the Al content increased,and then increased again.This is due to the combined effect of the increase of theβphase and decrease of the impurity effect,and the increase of the dissolved Al content.The results suggest that it is necessary to analyze the effect of alloying elements on the corrosion behavior of pure Mg with information concerning the impurity content and processing history.
文摘Determination of trace rare earth elements(REEs)in 99. 999% purity yttrium oxide using the inductively coupled plasma mass spectrometric technique (ICPMS) has been developed. Instrumental parameters and factors affecitng analytical results have been studied and then optimized.Samples are analyzed directly following an acid digestion without separation or preconcentration and with limit of detection of 0. 003~0. 02 ng/ml, precision of ±5. 4%(cofficient of variation)and recovery of 90~115%. Correction for isobaric interferences from oxide ions and hydroxide ions is made mathematically. Special internal standard procedures are used to compensate drift in metal:metal oxide ratios and sensitivity. The analytical results of several samples are accurate as compared with inductively coupled plasma atomic emission spectrometry (ICPAES) and spark source mass spectrometry (SSMS).
基金Part by a Grant from Sona College of TechnologySalem。
文摘The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption.
文摘A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nitroso 2 naphthol. The matrix effect of cobalt on the absorptions of trace impurities, the effects of reaction time, pH value, dosage of precipitant on the formation of cobalt 1 nitroso 2 naphthol complex, the effects of hydrochloric acid on the stability of this complex and masking of elements were studied. Recoveries of the impurities in spiked sample are from 90% to 110% with a precision of 1.1% 5.0% RSD. The detection limits of the seven elements are in the range of 0.01 0.24μg/g. The method can be applied to the analysis of high purity cobalt metal, cobalt oxide and other cobalt compounds.
基金Projects(51871243,51574290)supported by the National Natural Science Foundation of ChinaProject(2019JJ40381)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,China。
文摘A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading.
文摘A new technological process for production of talium tungstate from low-grade tungsten-concentrate witha high content of calcium and other impurities has been studied. The experiments showed that average tungstenleaching efficiency of more than 96. 92 % can be obtained with a low NaOH consumption by using the mechani-cal activating caustic decomposition , and the content of main impurities (P, As, Si) in Na_2WO_4 solution ob-tained is competitive with that from standard wolframite concentrate by traditional caustic decomposition. Afterrecovering caustic liquor by first crystallization, molylxlenum is removed from Na_2WO_4 solution by ion ex-change method. High-purity sodium tungstate is obtained by second crystallization of Na_2WO_4 solution. Thistechnology has the advantages of good adaptability for raw materials, high removing efficiency of impurities,high tungsten recovery and high economic benefit.
文摘A new method for the determination of trace non-rare earth elements (NREEs) impurities in high-purity lanthanum oxide by HPLC combined with ICP-AES is proposed. The chromatographic retention behaviors of matrix (La) and NREEs were studied using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (P507) chelating resin as the stationary phase and dilute nitric acid as the mobile phase. It is found that the use of pH 1.7 nitric acid enables effective elution of NREEs from HPLC column, but the lanthanum remains on the column. The experimental results show that a favorable separation between matrix lanthanum and NREEs can be obtained within 15 min. The method proposed is applied to the determination of 8 NREEs impurities in high-purity La2O3. The recoveries of 8 NREEs are in the range of 90 % similar to 110 %.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
文摘An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise performance has been realized. All the building blocks are implemented with differential topology except for the off-chip loop filter. To further reduce the phase noise,bonding wires are used to form the resonator in the LC-VCO. The frequency synthesizer operates from 2.39 to 2.72GHz with output power of about 0dBm. The measured closed-loop phase noise is - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from the carrier. The power level of the reference spur is less than - 72dBc. With a 3V power supply, the whole chip including the output buffers consumes 60mA.
基金Project(51271203)supported by the National Natural Science Foundation of Chinathe PPP project between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)+2 种基金Project(11JJ2025)supported by Hunan Provincial Natural Science Foundation of ChinaProject(YSZN2013CL06)supported by the Nonferrous Metals Science Foundation of HNG-CSUProject supported by the Aid program for Science Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.
基金Project(51174235)supported by the National Natural Science Foundation of China
文摘Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
基金Project supported by the National Scientific and Technological Achievements Spread Project (2004EC00299)Science and Technology Type Middle and Small Business Technique Invention Fund (04C26225121390)
文摘China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% .
文摘High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.
基金the National Science Foundation of China(Nos.50934001 and 51322402)the National High-Tech Research and Development Program of China (No.2012AA062302)+2 种基金the Program of the Co-construction with Beijing Municipal Commission of Education of China (Nos.00012047 and 00012085)the Program for New Century Excellent Talents in Universities(NCET-11-0577)the Fundamental Research Funds for the Central Universities(No.FRF-AS-11-003A)
文摘TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl-KCl melt under negative pressure. The as-prepared NaCl-KCl-TiClx melt was employed as the electrolyte, and two parallel crude titanium plates and one high-purity titanium plate were used as the anode and cathode, respectively. A series of electrochemical tests were performed to investigate the influence of electrolytic parameters on the current efficiency and quality of cathodic products. The results indicated that the quality of cathodic products was related to the current efficiency, which is significantly dependent on the current density and the initial concentration of titanium ions. The significance of this study is the attainment of high-purity titanium with a low oxygen content of 30× 10^-6.