The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac...The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.展开更多
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabri...The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.展开更多
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul...High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.展开更多
Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared...Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.展开更多
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for...Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
Lithium-ion capacitors(LICs)are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.However,capacity lopsidedness ...Lithium-ion capacitors(LICs)are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.However,capacity lopsidedness and low output voltage greatly hinder the realization of high-energy-density LICs.Herein,a strategy of balancing capacity towards fastest dynamics is proposed to enable high-voltage LICs.Through electrochemical prelithiation of Nb_(2)C to be 1.1 V with 165 mAh g^(-1),Nb_(2)C//LiFePO_(4) LICs show a broadened potential window from 3.0 to 4.2 V and an according high energy density of 420 Wh kg^(-1).Moreover,the underlying mechanism between prelithiation and high voltage is disclosed by electrochemical dynamic analysis.Prelithiation declines the Nb_(2)C anode potential that facilitates electron transmission in the interlayer of two-dimensional Nb_(2)C MXene.This effect induces small drive force for Li^(+)ions deposition and hence weakens the repulsive force from adsorbed ions on the electrode surface.Benefiting from even more Li^(+)ions deposition,a higher voltage is eventually delivered.In addition,prelithiation significantly increases Coulomb efficiency of the 1st cycle from 74%to 90%,which is crucial to commercial application of LICs.展开更多
Succinonitrile-based plastic crystal electrolytes have emerged for high-energy-density Li metal batteries in terms of their superior ambient ionic conductivity,low flammability,and benign compatibility with high volta...Succinonitrile-based plastic crystal electrolytes have emerged for high-energy-density Li metal batteries in terms of their superior ambient ionic conductivity,low flammability,and benign compatibility with high voltage cathode,but are hampered by inherent instabilities toward Li anodes.Constructing hierarchical solid electrolytes structure is a fundamental approach to protect Li anode from succinonitrile attacks,with succinonitrile-based oxidation-resistance layer facing high voltage cathode and reduction-tolerant layer contacting Li anode.However,free succinonitrile molecules in succinonitrile-based electrolyte layer can diffuse across the electrolyte/electrolyte interface and further reach Li anode surface during the battery cycle.This chemical“crosstalk”cause reduction-tolerant electrolyte layer to fail to protect the Li anode from the attacks of free succinonitrile molecules.Nano Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)is introduced creatively into succinonitrile-based electrolyte layer.By taking advantage of the complexation between La atoms in Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)and N atoms in succinonitrile,the free succinonitrile molecules are successfully immobilized in succinonitrile-based electrolyte layer.The resulting low resistance and highly durable solid electrolyte interphase and cathode electrolyte interphase endow NCM622||Li batteries with remarkable cycle stability.Our research provides a new idea for the real application of plastic crystal electrolytes in high voltage solid-state lithium metal batteries.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work...Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work proposes a unique approach to increase the voltages of aqueous zinc batteries by using tri-functional metallic bipolar electrode with good electrochemical activity and ultrahigh electronic conductivity,which not only participates in redox reactions,but also functions as an electrical highway for charge transport.Furthermore,bipolar electrode can replace expensive ion selective membrane to separate electrolytes with different pH;thus,redox couples with higher potential in acid condition and Zn=Zn(OH)^(2-)_(4) couple with lower potential in alkaline condition can be employed together,leading to high voltages of aqueous zinc batteries.Herein,two types of metallic bipolar electrodes of Cu and Ag are utilized based on three kinds of aqueous zinc batteries:Zn–MnO_(2),Zn–I_(2),and Zn–Br_(2).The voltage of aqueous Zn–MnO_(2) battery is raised to 1.84 V by employing one Cu bipolar electrode,which shows no capacity attenuation after 3500 cycles.Moreover,the other Ag bipolar electrode can be adopted to successfully construct Zn–I_(2) and Zn–Br_(2) batteries exhibiting much higher voltages of 2.44 and 2.67 V,which also show no obvious capacity degradation for 1000 and 800 cycles,representing decent cycle stability.Since bipolar electrode can be applied in a large family of aqueous batteries,this work offers an elaborate high-voltage concept based on tri-functional metallic bipolar electrode as a model system to open a door to explore high-voltage aqueous batteries.展开更多
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba...The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed.展开更多
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en...Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.展开更多
High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs...High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.展开更多
Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,deve...Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,developing high-voltage LiNi_(x)Co_(y)Mn_(z)O_(2)(x+y+z=1,NCM)to achieve high energy density is particularly important.However,under high voltage cycling,NCM often exhibits rapid capacity degradation,which can be attributed to oxygen release,structural phase transition and particle cracking.In this work,the representative single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)was studied under various high charge cut-off voltages.Analysis by x-ray diffraction(XRD),transmission electron microscope(TEM)and electron back scatter diffraction(EBSD)measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling,which is responsible for the increase of impedance and the rapid decay of capacity.Therefore,inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages.These findings provide effective guidance for the development of high-voltage NCM.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have prove...Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.展开更多
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019MEM014)。
文摘The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
基金National Natural Science Foundation of China,Grant/Award Numbers:22005297,22125903,51872283,22209175,22209176National Key Research and Development Program of China,Grant/Award Number:2022YFA1504100+8 种基金Support Program for Excellent Young Talents in Universities of Anhui Province,Grant/Award Number:2022AH030134Anhui Province Higher Education Innovation Team:Key Technologies and Equipment Innovation Team for Clean Energy,Grant/Award Number:2023AH010055Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB36030200Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019,DNL202003DICP,Grant/Award Number:DICP I2020032Doctor Research Startup Foundation of Suzhou University,Grant/Award Number:2023BSK015China Postdoctoral Science Foundation,Grant/Award Numbers:2020M680995,2021M693127International Postdoctoral Exchange Fellowship Program,Grant/Award Number:YJ20210311。
文摘The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks(No.SGNR0000KJJS2302137)the National Natural Science Foundation of China(Grant No.62203248)the Natural Science Foundation of Shandong Province(Grant No.ZR2020ME194).
文摘High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.
基金financially supported by the National Natural Science Foundation of China(Nos.52202236 and 5202780089)China Postdoctoral Science Foundation(Nos.2024T170300 and 2022M711232).
文摘Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.
基金financially supported by National Natural Science Foundation of China(No.52102270)the Natural Science Foundation of Shandong Province of China(ZR2021QE002)+1 种基金the support from the Institute startup grant from Qingdao Universitythe Shandong Center for Engineered Nonwovens(SCEN)。
文摘Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金financial supported from the National Natural Science Foundation of China (Nos. 51977185 and 51972277)the financial supported from Southwest Jiaotong University Science and Technology Rising Star Program (No. 2682021CG021)
文摘Lithium-ion capacitors(LICs)are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.However,capacity lopsidedness and low output voltage greatly hinder the realization of high-energy-density LICs.Herein,a strategy of balancing capacity towards fastest dynamics is proposed to enable high-voltage LICs.Through electrochemical prelithiation of Nb_(2)C to be 1.1 V with 165 mAh g^(-1),Nb_(2)C//LiFePO_(4) LICs show a broadened potential window from 3.0 to 4.2 V and an according high energy density of 420 Wh kg^(-1).Moreover,the underlying mechanism between prelithiation and high voltage is disclosed by electrochemical dynamic analysis.Prelithiation declines the Nb_(2)C anode potential that facilitates electron transmission in the interlayer of two-dimensional Nb_(2)C MXene.This effect induces small drive force for Li^(+)ions deposition and hence weakens the repulsive force from adsorbed ions on the electrode surface.Benefiting from even more Li^(+)ions deposition,a higher voltage is eventually delivered.In addition,prelithiation significantly increases Coulomb efficiency of the 1st cycle from 74%to 90%,which is crucial to commercial application of LICs.
基金supported by R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal University+1 种基金the Fundamental Research Funds for the Central Universities(2412020FZ007,2412020FZ008)National Natural Science Foundation of China(22102020).
文摘Succinonitrile-based plastic crystal electrolytes have emerged for high-energy-density Li metal batteries in terms of their superior ambient ionic conductivity,low flammability,and benign compatibility with high voltage cathode,but are hampered by inherent instabilities toward Li anodes.Constructing hierarchical solid electrolytes structure is a fundamental approach to protect Li anode from succinonitrile attacks,with succinonitrile-based oxidation-resistance layer facing high voltage cathode and reduction-tolerant layer contacting Li anode.However,free succinonitrile molecules in succinonitrile-based electrolyte layer can diffuse across the electrolyte/electrolyte interface and further reach Li anode surface during the battery cycle.This chemical“crosstalk”cause reduction-tolerant electrolyte layer to fail to protect the Li anode from the attacks of free succinonitrile molecules.Nano Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)is introduced creatively into succinonitrile-based electrolyte layer.By taking advantage of the complexation between La atoms in Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)and N atoms in succinonitrile,the free succinonitrile molecules are successfully immobilized in succinonitrile-based electrolyte layer.The resulting low resistance and highly durable solid electrolyte interphase and cathode electrolyte interphase endow NCM622||Li batteries with remarkable cycle stability.Our research provides a new idea for the real application of plastic crystal electrolytes in high voltage solid-state lithium metal batteries.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.
基金The authors would like to acknowledge the financial support sponsored by Ten-thousand Talents Program,K.C.Wong Pioneer Talent Program,Shanghai Pujiang Program (Grant No.19PJ1410600)the National Natural Science Foundation of China (Grant No.51901240).
文摘Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work proposes a unique approach to increase the voltages of aqueous zinc batteries by using tri-functional metallic bipolar electrode with good electrochemical activity and ultrahigh electronic conductivity,which not only participates in redox reactions,but also functions as an electrical highway for charge transport.Furthermore,bipolar electrode can replace expensive ion selective membrane to separate electrolytes with different pH;thus,redox couples with higher potential in acid condition and Zn=Zn(OH)^(2-)_(4) couple with lower potential in alkaline condition can be employed together,leading to high voltages of aqueous zinc batteries.Herein,two types of metallic bipolar electrodes of Cu and Ag are utilized based on three kinds of aqueous zinc batteries:Zn–MnO_(2),Zn–I_(2),and Zn–Br_(2).The voltage of aqueous Zn–MnO_(2) battery is raised to 1.84 V by employing one Cu bipolar electrode,which shows no capacity attenuation after 3500 cycles.Moreover,the other Ag bipolar electrode can be adopted to successfully construct Zn–I_(2) and Zn–Br_(2) batteries exhibiting much higher voltages of 2.44 and 2.67 V,which also show no obvious capacity degradation for 1000 and 800 cycles,representing decent cycle stability.Since bipolar electrode can be applied in a large family of aqueous batteries,this work offers an elaborate high-voltage concept based on tri-functional metallic bipolar electrode as a model system to open a door to explore high-voltage aqueous batteries.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFE0100200)the National Natural Science Foundation of China(Grant No.U1964205)the Beijing Municipal Science and Technology Commission(Grant No.Z191100004719001)。
文摘The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed.
基金the National Natural Science Foundation of China(Grant No.22179044).
文摘Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.
基金financially supported by the National Science and Technology Major Project(No.2016ZX05034004)。
文摘High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.
文摘Layered cathode materials have been successfully commercialized and applied to electric vehicles.To further improve improve the energy density of these marterials is still the main efforts in the market.Therefore,developing high-voltage LiNi_(x)Co_(y)Mn_(z)O_(2)(x+y+z=1,NCM)to achieve high energy density is particularly important.However,under high voltage cycling,NCM often exhibits rapid capacity degradation,which can be attributed to oxygen release,structural phase transition and particle cracking.In this work,the representative single-crystal LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)was studied under various high charge cut-off voltages.Analysis by x-ray diffraction(XRD),transmission electron microscope(TEM)and electron back scatter diffraction(EBSD)measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling,which is responsible for the increase of impedance and the rapid decay of capacity.Therefore,inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages.These findings provide effective guidance for the development of high-voltage NCM.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
文摘Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.