Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatme...As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.展开更多
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h...Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.展开更多
All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocess...All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.展开更多
Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor pla...Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor plasticity at room temperature,and unsatisfactory formability.To address these challenges,grain refinement and grain structure control have been identified as crucial factors to achieving high performance in low-alloyed Mg alloys.An effective way for regulating grain structure is through grain boundary(GB)segregation.This review presents a comprehensive summary of the distribution criteria of segregated atoms and the effects of solute segregation on grain size and growth in Mg alloys.The analysis encompasses both single element segregation and multi-element co-segregation behavior,considering coherent interfaces and incoherent interfaces.Furthermore,we introduce the high mechanical performance low-alloyed wrought Mg alloys that utilize GB segregation and analyze the potential impact mechanisms through which GB segregation influences materials properties.Drawing upon these studies,we propose strategies for the design of high mechanical performance Mg alloys with desirable properties,including high strength,excellent ductility,and good formability,achieved through the implementation of GB segregation.The findings of this review contribute to advancing the understanding of grain boundary engineering in Mg alloys and provide valuable insights for future alloy design and optimization.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Sc...In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Scientific C18 column (250 mm×4.6 mm, 5 μm) as the chromatographic column and acetonitrile and water as the mobile phase, and the excitation wavelength and emission wavelength of fluorescence detector were 286 and 430 nm, respectively. The response was high, and the linear range was 0.5-10.0 ng/ml. The lowest limit of detection was 0.11 ng/ml, and the average recovery was 92.5%. This method is suitable for quantitative analysis of benzo[a]pyrene content in edible oil.展开更多
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous...Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.展开更多
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ...We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.展开更多
Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,s...Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices.展开更多
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d...Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.展开更多
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan...The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.展开更多
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc...In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.展开更多
To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosit...To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.展开更多
High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa...Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.展开更多
Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions betw...Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.展开更多
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ...The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金supported by the National Natural Science Foundation of China (No.52074330,No.52288101)。
文摘As drilling wells continue to move into deep ultra-deep layers,the requirements for temperature resistance of drilling fluid treatments are getting higher and higher.Among them,blocking agent,as one of the key treatment agents,has also become a hot spot of research.In this study,a high temperature resistant strong adsorption rigid blocking agent(QW-1)was prepared using KH570 modified silica,acrylamide(AM)and allyltrimethylammonium chloride(TMAAC).QW-1 has good thermal stability,average particle size of 1.46μm,water contact angle of 10.5.,has a strong hydrophilicity,can be well dispersed in water.The experimental results showed that when 2 wt%QW-1 was added to recipe A(4 wt%bentonite slurry+0.5 wt%DSP-1(filtration loss depressant)),the API filtration loss decreased from 7.8to 6.4 m L.After aging at 240.C,the API loss of filtration was reduced from 21 to 14 m L,which has certain performance of high temperature loss of filtration.At the same time,it is effective in sealing 80-100mesh and 100-120 mesh sand beds as well as 3 and 5μm ceramic sand discs.Under the same conditions,the blocking performance was superior to silica(5μm)and calcium carbonate(2.6μm).In addition,the mechanism of action of QW-1 was further investigated.The results show that QW-1 with amide and quaternary ammonium groups on the molecular chain can be adsorbed onto the surface of clay particles through hydrogen bonding and electrostatic interaction to form a dense blocking layer,thus preventing further intrusion of drilling fluid into the formation.
基金supported by the National Natural Science Foundation of China(Grant No.32250410309 and 52105582)Natural Science Foundation of Guangdong Province(Grant No.2022A1515010894 and 2022B0303040002)+1 种基金Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030 and JCYJ20220818095810023)Shenzhen-Hong Kong-Macao S&T Program(Category C:SGDX20210823103200004)
文摘Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
基金The authors acknowledge the financial support by the National Natural Science Foundation of China(52161145408 and 21975038)the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)+2 种基金the Fundamental Research Funds for the Central Universities(DUT22QN213)the Innovation Technology Fund(MRP/040/21X)the Green Technology Fund(GTF202020164)for their financial support。
文摘All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.
基金the support of the National Natural Science Foundation of China(52071093 and 51871069)the Natural Science Foundation of Heilongjiang Province of China(LH2023E059)+1 种基金the Fundamental Research Program of Shenzhen Science and Technology Innovation Commission(JCYJ20210324131405015)PolyU Grant(1-BBR1)。
文摘Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor plasticity at room temperature,and unsatisfactory formability.To address these challenges,grain refinement and grain structure control have been identified as crucial factors to achieving high performance in low-alloyed Mg alloys.An effective way for regulating grain structure is through grain boundary(GB)segregation.This review presents a comprehensive summary of the distribution criteria of segregated atoms and the effects of solute segregation on grain size and growth in Mg alloys.The analysis encompasses both single element segregation and multi-element co-segregation behavior,considering coherent interfaces and incoherent interfaces.Furthermore,we introduce the high mechanical performance low-alloyed wrought Mg alloys that utilize GB segregation and analyze the potential impact mechanisms through which GB segregation influences materials properties.Drawing upon these studies,we propose strategies for the design of high mechanical performance Mg alloys with desirable properties,including high strength,excellent ductility,and good formability,achieved through the implementation of GB segregation.The findings of this review contribute to advancing the understanding of grain boundary engineering in Mg alloys and provide valuable insights for future alloy design and optimization.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
文摘In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Scientific C18 column (250 mm×4.6 mm, 5 μm) as the chromatographic column and acetonitrile and water as the mobile phase, and the excitation wavelength and emission wavelength of fluorescence detector were 286 and 430 nm, respectively. The response was high, and the linear range was 0.5-10.0 ng/ml. The lowest limit of detection was 0.11 ng/ml, and the average recovery was 92.5%. This method is suitable for quantitative analysis of benzo[a]pyrene content in edible oil.
基金This work was supported by the Key Research and Development Program of Shaanxi(2022ZDLGY05-08)the Application Innovation Program of CASC(China Aerospace Science and Technology Corporation)(6230107001)+2 种基金the Research Project on Civil Aerospace Technology(D040304)the Research Project of CAST(Y23-WYHXJS-07)the Research Foundation of the Key Laboratory of Spaceborne Information Intelligent Interpretation(2022-ZZKY-JJ-20-01).
文摘Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.
基金Funed by the National Natural Science Foundation of China(No.U21A20149)the Ecological Environment Scientific Research Project of Anhui Province(No.2023hb0014)+2 种基金the Research Reserve of Anhui Jianzhu University(No.2022XMK01)the Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No.2022AH010017)Research on the preparation technology of self compacting concrete with strength grade C100.
文摘We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIP) (2018R1A6A1A03025708)。
文摘Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52130604 and 51825604)。
文摘Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.
基金supported by National Natural Science Foundation of China(51903113 and 52073133)China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.
基金supported by the Defense Industrial Technology Development Program(Grant No.JCKY2018604B004)the National Natural Science Foundation of China(Grant No.11972007)。
文摘In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.
基金Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金supported by the National Natural Science Foundation of China(Nos.52222403,52074333,52120105007)Taishan Scholar Young Expert(No.tsqn202211079)。
文摘Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072317)the Natural Science Foundation of Zhejiang Province(Grant No.LZ21A020002)+2 种基金Ligang Sun gratefully acknowledges the support received from the Guangdong Basic and Applied Basic Research Foundation(Grant No.22022A1515011402)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.GXWD20231130102735001)Development and Reform Commission of Shenzhen(Grant No.XMHT20220103004).
文摘Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.
基金supported by National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) (Grant No.22FAA02811)Pearl River Talent Plan for the Introduction of High-level Talents (Young Top-notch Talents) (Grant No.2021QN02G744)+1 种基金National Natural Science Foundation of China (Grant No.52178426)the Fundamental Research Funds for the Central Universities (Grant No.SCUT 2022ZYGXZR066 and 2023ZYGXZR001).
文摘The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.