Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for...Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.展开更多
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,...The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,including the application of traditional friction stir welding technology to a combination of a lap joint and butt joint,and butt joint of large thick plate by both sides process,also introduces bobbin-tool friction stir welding to a butt joint and three-dimensional space curved friction stir welding to T-joint. At the same time the future development trend of new FSW technology derived from traditional FSW technology in rail vehicle manufacturing industry is put forward. As the fast developing of critical technology used on railway vehicles,quick applying advanced welding technology will affect products quality,manufacturing cost and production cycle time directly,and it certainly will be one of the approaches to develop markets by all the railway vehicles manufacturing enterprises.展开更多
基金supported by the National Natural Science Foundation of China [No.U1334206]the National Key R&D Program of China [No.2016YFB1200500]
文摘Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金supported by Changchun Science and Technology Innovation"Double Tenth Project"(Grant No.17SS024)Technical Development Project of CRRC Changchun Railway Vehicles Co.,Ltd(Grant No.16GCZX006)
文摘The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,including the application of traditional friction stir welding technology to a combination of a lap joint and butt joint,and butt joint of large thick plate by both sides process,also introduces bobbin-tool friction stir welding to a butt joint and three-dimensional space curved friction stir welding to T-joint. At the same time the future development trend of new FSW technology derived from traditional FSW technology in rail vehicle manufacturing industry is put forward. As the fast developing of critical technology used on railway vehicles,quick applying advanced welding technology will affect products quality,manufacturing cost and production cycle time directly,and it certainly will be one of the approaches to develop markets by all the railway vehicles manufacturing enterprises.