The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed...The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.展开更多
To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkali...To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.展开更多
As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuati...As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuation of concrete strength)of piers caused by chloride ion seriously curtail the normal service life and deteriorate the anti-seismic property of bridge structures.The engineered cementitious composite(ECC)-reinforced concrete(RC)composite pier with high strength reinforcement bars(HSRB)is expected to solve the above problems.This study aims to clarify the time-varying seismic vulnerability(SV)of the HSRBECC-RC composite pier during its full life cycle(FLC).Based on OpenSees,the refined finite element analysis models of RC pier,ECC-RC composite pier,and HSRBECC-RC composite pier have been established.Moreover,using the nonlinear time-path dynamic analysis method,the influence of chloride ion erosion on the time-dependent seismic vulnerability(SV)of these different piers in different service life and different peak ground acceleration(PGA)were analyzed from a dynamic point of view.The research shows that the exceeding probability(EP)of the same damage level increases with the enhancement of service time and PGA and with the increase of destruction,the exceeding probability(EP)of slight damage(DL-1),moderate damage(DL-2),serious damage(DL-3),and complete collapse(DL-4)decreases in turn;the corrosion degree of chloride ion to piers is small during the early service period,the time-varying vulnerability curve of the bridge piers is almost the same as that of a new bridge,and during later service,as the extent of chloride ion corrosion deepens,exceeding probability(EP)under severe damage(DL-3)and complete collapse(DL-4)is increased,and the seismic performance is significantly enhanced.展开更多
The size effect of tension round bars with circumferential crack was described and used to measure the plane-strain fracture toughness K_(1c) of median or low strength steel.The size of cylindrical specimen required f...The size effect of tension round bars with circumferential crack was described and used to measure the plane-strain fracture toughness K_(1c) of median or low strength steel.The size of cylindrical specimen required for K_(1c) measurement is much smaller than that of standard specimen.The J-integral values of the cylindrical sqecimens were calculated to characterize the size effect.The finite element calculution and fracture morphology analysis have been conducted to eyplain the fact that smaller cylindrical specimen could be used to measure K_(1c) of median or low strength steel.展开更多
In order to investigate the tensile bond anchorage properties of Australian 500N steel bars in concrete, 111 pullout tests were conducted. The precise bond slip values have been gained by using the laser displacement ...In order to investigate the tensile bond anchorage properties of Australian 500N steel bars in concrete, 111 pullout tests were conducted. The precise bond slip values have been gained by using the laser displacement sensor with high resolution, including the complete bond-slip curves. How the main anchorage factors such as concrete strength, bar diameter (8, I0, 12, 16, 20, 24, 28, 32 and 36 mm) the concrete covered, embedded length and transverse reinforcement influencing the bond anchorage properties was studied under tensile condition. The process of the tensile force-slip failure for Australian 500N reinforcing steel can be divided into five stages: elastic stage, local slip stage, slip in ascent stage, slip in descent stage and remnant stage. The formula for calculating the tensile bond strength of Australian 500N reinforcing bar in concrete was proposed according to the test results, including the consistent model for tensile bond-slip relationship.展开更多
This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The ...This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.展开更多
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea...The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.展开更多
For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already ...For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.展开更多
Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensi...Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.展开更多
An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1....An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.展开更多
基金the National Natural Science Foundation of China(No.50479059)
文摘The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.
基金Funded Partly by the National Natural Science Foundation of China(No.51178361)
文摘To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.
基金National Natural Science Foundation of China under Grant No.51608488China Postdoctoral Science Foundation under Grant No.2020M672277Scientific and Technological Project of Henan province,China under Grant No.192102210185。
文摘As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuation of concrete strength)of piers caused by chloride ion seriously curtail the normal service life and deteriorate the anti-seismic property of bridge structures.The engineered cementitious composite(ECC)-reinforced concrete(RC)composite pier with high strength reinforcement bars(HSRB)is expected to solve the above problems.This study aims to clarify the time-varying seismic vulnerability(SV)of the HSRBECC-RC composite pier during its full life cycle(FLC).Based on OpenSees,the refined finite element analysis models of RC pier,ECC-RC composite pier,and HSRBECC-RC composite pier have been established.Moreover,using the nonlinear time-path dynamic analysis method,the influence of chloride ion erosion on the time-dependent seismic vulnerability(SV)of these different piers in different service life and different peak ground acceleration(PGA)were analyzed from a dynamic point of view.The research shows that the exceeding probability(EP)of the same damage level increases with the enhancement of service time and PGA and with the increase of destruction,the exceeding probability(EP)of slight damage(DL-1),moderate damage(DL-2),serious damage(DL-3),and complete collapse(DL-4)decreases in turn;the corrosion degree of chloride ion to piers is small during the early service period,the time-varying vulnerability curve of the bridge piers is almost the same as that of a new bridge,and during later service,as the extent of chloride ion corrosion deepens,exceeding probability(EP)under severe damage(DL-3)and complete collapse(DL-4)is increased,and the seismic performance is significantly enhanced.
文摘The size effect of tension round bars with circumferential crack was described and used to measure the plane-strain fracture toughness K_(1c) of median or low strength steel.The size of cylindrical specimen required for K_(1c) measurement is much smaller than that of standard specimen.The J-integral values of the cylindrical sqecimens were calculated to characterize the size effect.The finite element calculution and fracture morphology analysis have been conducted to eyplain the fact that smaller cylindrical specimen could be used to measure K_(1c) of median or low strength steel.
基金Project(DP0988940) supported by Australian Research Council Discovery Grant Program Project(2011M500930) supported by Postdoctoral Science Foundation of China+1 种基金Project(11KJB560003) supported by College Natural Science Foundation of Jiangsu Province,ChinaProject(163050072) supported by the Talent Introduction Foundation of Nanjing Forestry University,China
文摘In order to investigate the tensile bond anchorage properties of Australian 500N steel bars in concrete, 111 pullout tests were conducted. The precise bond slip values have been gained by using the laser displacement sensor with high resolution, including the complete bond-slip curves. How the main anchorage factors such as concrete strength, bar diameter (8, I0, 12, 16, 20, 24, 28, 32 and 36 mm) the concrete covered, embedded length and transverse reinforcement influencing the bond anchorage properties was studied under tensile condition. The process of the tensile force-slip failure for Australian 500N reinforcing steel can be divided into five stages: elastic stage, local slip stage, slip in ascent stage, slip in descent stage and remnant stage. The formula for calculating the tensile bond strength of Australian 500N reinforcing bar in concrete was proposed according to the test results, including the consistent model for tensile bond-slip relationship.
文摘This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.
文摘The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.
基金Supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through Discovery Grant(72031326)
文摘For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.
基金provided by the Innovative Research Groups of Natural Science Foundation of China (NSFC) (Grant No. 51321065)NSFC (Grant No. 51479131)The research of Kaiwen Xia was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery (Grant No. 72031326)
文摘Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.
基金supported by the 111 Project (B07050)the National Natural Science Foundation of China (10932008)
文摘An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.