High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ...High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.展开更多
The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the mean...The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.展开更多
The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relat...The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.展开更多
The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises d...The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises dendritic matrix and inter-dendritic M 2 B boride;and the matrix comprises martensite and pearlite.After quenching in the air,the matrix is changed into lath martensite;but only 1-μm-size second phase exists in the matrix.After tempering,another second phase of several tens of nanometers is found in the matrix,and the size and quantity increase with an increase in tempering temperature.The two kinds of second precipitation phase with different sizes in the matrix have the same chemical formula,but their forming stages are different.The precipitation phase with larger size forms during the austenitizing process,while the precipitation phase with smaller size forms during the tempering process.When tempered at different temperatures after quenching,the hardness decreases with an increase in the tempering temperature,but it increases a little at 450 ℃ due to the precipitation strengthening effect of the second phase,and it decreases greatly due to the martensite decomposition above 450 ℃.The impact toughness increases a little when tempered below 300 ℃,but it then decreases continuously owing to the increase in size and quantity of the secondary precipitate above 300 ℃.Considered comprehensively,the optimum tempering temperature is suggested at 300 ℃ to obtain a good combination of hardness and toughness.展开更多
Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed s...Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.展开更多
The structure and properties of high chromium white cast iron in different treatment states were studied. Using X ray diffraction method, observing their metallograph and measuring their microhardness, the phases inv...The structure and properties of high chromium white cast iron in different treatment states were studied. Using X ray diffraction method, observing their metallograph and measuring their microhardness, the phases involved in the iron were determined. The notch toughness, macrohardness and the fractograph of the samples are compared and their performance was determined, which mainly depends on the matrix structure. Relatively good comprehensive properties can be obtained in the tempering state. Improvements have been made on the commonly used tempering standard. Tempering for a short period at low temperature can improve the materials′ service performance obviously.展开更多
The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied.The results indicate that the fraction of retained austenite and...The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied.The results indicate that the fraction of retained austenite and the manganese distribution in as-cast alloys are controlled by manganese content.The manganese distribution in as-cast alloys is not homogeneous.The manganese content in carbide is higher than that in matrix.Whether the secondary hardening occurs or not and the peak hardness of secondary hardening is controlled by manganese content in retained austenite in as-cast structure.Higher manganese content can cause more retained austenite.The secondary hardening occurs in sub-critical treating process if the fraction of retained austenite is high.展开更多
It is found that the deformation of white cast iron under forging production is only possible with a minimum number of permanent impurities. The developed modes of high-temperature intermediate annealing facilitate th...It is found that the deformation of white cast iron under forging production is only possible with a minimum number of permanent impurities. The developed modes of high-temperature intermediate annealing facilitate the deformation of the forging under normal production conditions. It is shown that in the process of isothermal annealing of white cast iron begins the process of disintegration of ledeburite in the more stable eutectic carbides, providing technological plasticity for subsequent forging. The installed influence of the purity of white cast iron on the morphology of the excess carbides and their ability to divide. Studies the morphology of the excess eutectic carbides after melting, pre-annealing and after deformation forging. Discovered that after severe plastic deformation the structure of white cast iron becomes more stable, due to the appearance of eutectic carbides. It was determined that the deformed structure of white iron, because of its lack ledeburite component, was more identical with the structure of the alloy ledeburite steels. The data obtained can be used for making Damascus bladed weapons products, experiencing shock-variables loads.展开更多
The formulas proposed by J. Dodd and J. L. Parks for calculating the hardenability of high-Cr white cast iron under continuous cooling condition was recommended. For broader application, some supplements were made to ...The formulas proposed by J. Dodd and J. L. Parks for calculating the hardenability of high-Cr white cast iron under continuous cooling condition was recommended. For broader application, some supplements were made to the formula. Through tests on the half-cooling time of typical castings, the compositions of ideal alloys were precisely designed using the Dodd’s formula. Hardness testing of heat-treated castings showed that the designed compositions were correct. The application of castings demonstrated excellent abrasion resistance.展开更多
The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination a...The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.展开更多
The structural change in heat affected zone(HAZ)and its influence on properties of welded white cast iron have been investigated by means of thermal cycle simulation technique.The structure of the white cast iron at p...The structural change in heat affected zone(HAZ)and its influence on properties of welded white cast iron have been investigated by means of thermal cycle simulation technique.The structure of the white cast iron at peak temperature 800℃ was examined as cementite in pearlitic matrix,of which the hardness and impact toughness are the lowest,while the struc- ture after cyclic heating at high peak temperature is mainly cementite together with twin martensite,of which the hardness and impact toughness are rather higher.The phase bounda- ries in the structure of low hardness are smooth and regular as well as with fine precipitates. Both the cleavage and interphase fracture were revealed in the structure of low hardness,while the transgranular fracture was found in those areas of higher hardness.展开更多
The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restr...The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restrained and the activation energy for the crack′s propagation can be increased by adding a certain amount of RE, and especially, the restraint for the thermal fatigue crack′s propagation is more evident under the combined action of RE and heat treatment at high working temperatures, which can be attributed to the segregation of RE to interfaces, the participation of granular carbides and the change of eutectic carbide morphology.展开更多
An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by ...An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes.The results indicated that under the proper agitating temperatures and speeds applied,the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time.It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction;then,as they were in solidifying,they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process.Especially,the dendrites were granulated as the bending process proceeding,which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron.Convective-ow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor.And the granulation process for such dendrites formed in the melt became possible under the condition.Certainly,dendrite fragments are another factors considerable to function for spherical particles formation.A new mechanism,regarding to the rheocast structure formation of white cast iron,was suggested based on the structural evolution observed in the study.展开更多
The microstructure and martensite substructure of as-cast martensitic high-Cr cast iron by injection microalloying have been studied by usig SEM and TEM.The relationship between distribution of alloying elements and p...The microstructure and martensite substructure of as-cast martensitic high-Cr cast iron by injection microalloying have been studied by usig SEM and TEM.The relationship between distribution of alloying elements and phase formation of carbide,as well as various branching and distortion of carbide,have been analysed by X-ray diffractometer and EPMA.展开更多
The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major ...The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.展开更多
A hot compression bonding process was developed to prepare a novel laminated composite consisting of high-Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the outer layers on a Gleeble 3500 the...A hot compression bonding process was developed to prepare a novel laminated composite consisting of high-Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the outer layers on a Gleeble 3500 ther- momechanicat simulator at a temperature of 950 ℃ and a strain rate of 0. 001 s 1. Interfacial bond quality and hot deformation behaviour of the laminate were studied by mierostructural characterisation and mechanical tests. Experi- mental results show that the metallurgical bond between the constituent metals was achieved under the proposed bonding conditions without discernible defects and the formation of interlayer or intermetallic layer along the inter- face. The interfacial bond quality is excellent since no deterioration occurred around the interface which was deformed by Vickers indentation and compression test at room temperature with parallel loading to the interface. After well cladding by the LCS, the brittle HCCI can be severely deformed (about 57 % of reduction) at high temperature with crack-free. This significant improvement should be attributed to the decrease of crack sensitivity due to stress relief by soft claddings and enhanced flow property of the HCCI by simultaneous deformation with the LCS.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2013BAF01B01)
文摘High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.
基金Item Sponsored by Guiding Program of Science and Technology Research of Jilin Province of China (20000513)
文摘The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.
文摘The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.
文摘The effect of different tempering temperatures on the microstructure and mechanical properties of airquenched high boron white cast iron was studied.The results indicate that the high boron white cast iron comprises dendritic matrix and inter-dendritic M 2 B boride;and the matrix comprises martensite and pearlite.After quenching in the air,the matrix is changed into lath martensite;but only 1-μm-size second phase exists in the matrix.After tempering,another second phase of several tens of nanometers is found in the matrix,and the size and quantity increase with an increase in tempering temperature.The two kinds of second precipitation phase with different sizes in the matrix have the same chemical formula,but their forming stages are different.The precipitation phase with larger size forms during the austenitizing process,while the precipitation phase with smaller size forms during the tempering process.When tempered at different temperatures after quenching,the hardness decreases with an increase in the tempering temperature,but it increases a little at 450 ℃ due to the precipitation strengthening effect of the second phase,and it decreases greatly due to the martensite decomposition above 450 ℃.The impact toughness increases a little when tempered below 300 ℃,but it then decreases continuously owing to the increase in size and quantity of the secondary precipitate above 300 ℃.Considered comprehensively,the optimum tempering temperature is suggested at 300 ℃ to obtain a good combination of hardness and toughness.
基金supported by the National Natural Science Foundation of China under grant No.50805109the Fundamental Research Funds for the Central Universities under grant No.2011-1a-023
文摘Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.
文摘The structure and properties of high chromium white cast iron in different treatment states were studied. Using X ray diffraction method, observing their metallograph and measuring their microhardness, the phases involved in the iron were determined. The notch toughness, macrohardness and the fractograph of the samples are compared and their performance was determined, which mainly depends on the matrix structure. Relatively good comprehensive properties can be obtained in the tempering state. Improvements have been made on the commonly used tempering standard. Tempering for a short period at low temperature can improve the materials′ service performance obviously.
文摘The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied.The results indicate that the fraction of retained austenite and the manganese distribution in as-cast alloys are controlled by manganese content.The manganese distribution in as-cast alloys is not homogeneous.The manganese content in carbide is higher than that in matrix.Whether the secondary hardening occurs or not and the peak hardness of secondary hardening is controlled by manganese content in retained austenite in as-cast structure.Higher manganese content can cause more retained austenite.The secondary hardening occurs in sub-critical treating process if the fraction of retained austenite is high.
文摘It is found that the deformation of white cast iron under forging production is only possible with a minimum number of permanent impurities. The developed modes of high-temperature intermediate annealing facilitate the deformation of the forging under normal production conditions. It is shown that in the process of isothermal annealing of white cast iron begins the process of disintegration of ledeburite in the more stable eutectic carbides, providing technological plasticity for subsequent forging. The installed influence of the purity of white cast iron on the morphology of the excess carbides and their ability to divide. Studies the morphology of the excess eutectic carbides after melting, pre-annealing and after deformation forging. Discovered that after severe plastic deformation the structure of white cast iron becomes more stable, due to the appearance of eutectic carbides. It was determined that the deformed structure of white iron, because of its lack ledeburite component, was more identical with the structure of the alloy ledeburite steels. The data obtained can be used for making Damascus bladed weapons products, experiencing shock-variables loads.
文摘The formulas proposed by J. Dodd and J. L. Parks for calculating the hardenability of high-Cr white cast iron under continuous cooling condition was recommended. For broader application, some supplements were made to the formula. Through tests on the half-cooling time of typical castings, the compositions of ideal alloys were precisely designed using the Dodd’s formula. Hardness testing of heat-treated castings showed that the designed compositions were correct. The application of castings demonstrated excellent abrasion resistance.
文摘The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.
文摘The structural change in heat affected zone(HAZ)and its influence on properties of welded white cast iron have been investigated by means of thermal cycle simulation technique.The structure of the white cast iron at peak temperature 800℃ was examined as cementite in pearlitic matrix,of which the hardness and impact toughness are the lowest,while the struc- ture after cyclic heating at high peak temperature is mainly cementite together with twin martensite,of which the hardness and impact toughness are rather higher.The phase bounda- ries in the structure of low hardness are smooth and regular as well as with fine precipitates. Both the cleavage and interphase fracture were revealed in the structure of low hardness,while the transgranular fracture was found in those areas of higher hardness.
文摘The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restrained and the activation energy for the crack′s propagation can be increased by adding a certain amount of RE, and especially, the restraint for the thermal fatigue crack′s propagation is more evident under the combined action of RE and heat treatment at high working temperatures, which can be attributed to the segregation of RE to interfaces, the participation of granular carbides and the change of eutectic carbide morphology.
基金supported by the Liaoning Education Bureau of China under grants No. 20061010
文摘An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes.The results indicated that under the proper agitating temperatures and speeds applied,the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time.It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction;then,as they were in solidifying,they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process.Especially,the dendrites were granulated as the bending process proceeding,which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron.Convective-ow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor.And the granulation process for such dendrites formed in the melt became possible under the condition.Certainly,dendrite fragments are another factors considerable to function for spherical particles formation.A new mechanism,regarding to the rheocast structure formation of white cast iron,was suggested based on the structural evolution observed in the study.
文摘The microstructure and martensite substructure of as-cast martensitic high-Cr cast iron by injection microalloying have been studied by usig SEM and TEM.The relationship between distribution of alloying elements and phase formation of carbide,as well as various branching and distortion of carbide,have been analysed by X-ray diffractometer and EPMA.
文摘The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.
基金Item Sponsored by National Natural Science Foundation of China(51474127)
文摘A hot compression bonding process was developed to prepare a novel laminated composite consisting of high-Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the outer layers on a Gleeble 3500 ther- momechanicat simulator at a temperature of 950 ℃ and a strain rate of 0. 001 s 1. Interfacial bond quality and hot deformation behaviour of the laminate were studied by mierostructural characterisation and mechanical tests. Experi- mental results show that the metallurgical bond between the constituent metals was achieved under the proposed bonding conditions without discernible defects and the formation of interlayer or intermetallic layer along the inter- face. The interfacial bond quality is excellent since no deterioration occurred around the interface which was deformed by Vickers indentation and compression test at room temperature with parallel loading to the interface. After well cladding by the LCS, the brittle HCCI can be severely deformed (about 57 % of reduction) at high temperature with crack-free. This significant improvement should be attributed to the decrease of crack sensitivity due to stress relief by soft claddings and enhanced flow property of the HCCI by simultaneous deformation with the LCS.