This paper discusses fabrication and performance of novel circular spiral inductors on silicon. The substrate materials underneath the inductor coil are removed by wet etching process. In the fabrication process, fine...This paper discusses fabrication and performance of novel circular spiral inductors on silicon. The substrate materials underneath the inductor coil are removed by wet etching process. In the fabrication process, fine polishing of the photoresist is used to simplify the processes and ensure perfect contact between the seed layer and the top of pillars. Dry etching technique is used to remove the seed layer. The results show that Q-factor of the inductor is greatly improved by removing silicon underneath the inductor coil. The spiral inductor with line width of 50 μm has a peak Q-factor of 10 for the inductance of 2.5 nH at frequency of 1 GHz, and the resonance frequency of the inductor is about 8.5 GHz. For the inductor of conductor width 80 μm, the peak Q-factor increases to about 17 for inductance of 1.5 nH in the frequency range of 0.05 -3.00 GHz.展开更多
The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(...The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(N),the width of the metal traces(W),the spacing between the traces(S),and the inner diameter(ID),changes in the performance of the inductors are analyzed in detail.The reasons for these changes in performance are presented.Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout.Some design rules are summarized.展开更多
A novel local-dielectric-thickening technique i s presented for performance improvements of Si-based spiral inductors.This technique employs the processes of deposition,photolithography,and wet-etching,to locally thic...A novel local-dielectric-thickening technique i s presented for performance improvements of Si-based spiral inductors.This technique employs the processes of deposition,photolithography,and wet-etching,to locally thicken the oxide layer under the inductor,which can decrease the substrate loss and improve the inductor performance.Both the structures and processes are compact,economical,and compatible with CMOS processing.Several square spiral inductors with different inductances are fabricated,and the quality factors and the self-resonant frequencies both increase clearly with this proposed technique:for the 10nH,5nH,and 2nH inductors,the peak quality factors are effectively improved by 46.7%,49.7%,and 68.6%,respectively;however,the improvement percents of the self-resonant frequencies are more significant,which are 92.1%,91.0%,and no less than 68.1% respectively.展开更多
文摘This paper discusses fabrication and performance of novel circular spiral inductors on silicon. The substrate materials underneath the inductor coil are removed by wet etching process. In the fabrication process, fine polishing of the photoresist is used to simplify the processes and ensure perfect contact between the seed layer and the top of pillars. Dry etching technique is used to remove the seed layer. The results show that Q-factor of the inductor is greatly improved by removing silicon underneath the inductor coil. The spiral inductor with line width of 50 μm has a peak Q-factor of 10 for the inductance of 2.5 nH at frequency of 1 GHz, and the resonance frequency of the inductor is about 8.5 GHz. For the inductor of conductor width 80 μm, the peak Q-factor increases to about 17 for inductance of 1.5 nH in the frequency range of 0.05 -3.00 GHz.
文摘The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(N),the width of the metal traces(W),the spacing between the traces(S),and the inner diameter(ID),changes in the performance of the inductors are analyzed in detail.The reasons for these changes in performance are presented.Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout.Some design rules are summarized.
文摘A novel local-dielectric-thickening technique i s presented for performance improvements of Si-based spiral inductors.This technique employs the processes of deposition,photolithography,and wet-etching,to locally thicken the oxide layer under the inductor,which can decrease the substrate loss and improve the inductor performance.Both the structures and processes are compact,economical,and compatible with CMOS processing.Several square spiral inductors with different inductances are fabricated,and the quality factors and the self-resonant frequencies both increase clearly with this proposed technique:for the 10nH,5nH,and 2nH inductors,the peak quality factors are effectively improved by 46.7%,49.7%,and 68.6%,respectively;however,the improvement percents of the self-resonant frequencies are more significant,which are 92.1%,91.0%,and no less than 68.1% respectively.