The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is...The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts, with minor picrites in the lower part and andesites, trachytes, and rhyolites in the upper part. The picrites have relatively higher platinum- group element (PGE) contents (PGE=16.3-28.2 ppb), with high Cu/Zr and Pd/Zr ratios, and low S contents (5.03-16.9 ppm), indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province (ELIP) mantle source. The slightly high Cu/Pd ratios (11 000-24 000) relative to that of the primitive mantle suggest that 0.007% sulfides have been retained in the mantle source. The PGE contents of the high-Ti basalts exhibit a wider range (~PGE=0.517-30.8 ppb). The samples in the middle and upper parts are depleted in PGE and have ~Nd (260 Ma) ratios ranging from -2.8 to -2.2, suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides, and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts. The samples in this area show Pt- Pd type primitive mantle-normalized PGE patterns, and the Pd/Ir ratios are higher than that of the primitive mantle (Pd/Ir=l), indicating that the obvious differentiation between Ir-group platinum- group elements (IPGE) and Pd-group platinum-group elements (PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution. The Pd/Pt ratios of most samples are higher than the average ratio of mantle (Pd/Pt=0.55), showing that the differentiation happened between Pt and Pd. The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle; whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys, coprecipitating with Ir-Ru-Os alloys. Some high-Ti basalt samples exhibit negative Ru anomalies, possibly due to removal of laurite collected by the early crystallized chromites.展开更多
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area mo...Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding ...As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.展开更多
Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest ...Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO_(2) storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO_(2) mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO_(2)storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin(of the dried maar lake). Petrography,rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe–Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5–8.2 and are dominated by the Mg–Ca–HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO_(2) injection dissolves primary minerals, including anorthite, albite, and diopside, while CO_(2)mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO_(2) underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO_(2) mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula.展开更多
The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ...The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.展开更多
Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the...Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.展开更多
The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous ro...The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous rock in this area. Necessary field inspection, geology, mineralogy and chemical tests were carried out on 8 basalt samples to determine their mineralogy, petrography and chemical composition. Representative samples have been tested with polarizing microscope, X-ray diffraction (XRD) and X-ray fluorescence (XRF). Petrographic and mineralogical studies show that the basalt is characterized by presence mainly of calcic-plagioclase feldspar, pyroxene-augite and olivine minerals. Secondary minerals of iron oxides also present (ilmenite and magnetite). The most appeared property is the alteration of olivine mineral to iddingsite that indicated highly weathered process. The composition of the basaltic samples reflects ultrabasic-basic type (Basanite-Tholeiitic basalt). The existence of volcanic activity occurred mostly with Pliocene age (< 2 Ma) as indicated by previous studies for similar basalt in Lebanon. Possibly, these boulders have been carried up from some deeper intrusive magmatic body under very active tension zones. Volcanism of Lebanon basalts belong to the alkaline olivine basalt, suite generally associated with tension, rifting and block faulting movements of the continental crust. Most of the volcanisms in Lebanon and in Harrat Ash Shaam Basalt from Syria and Palestine through Jordan to Saudi Arabia are related and connected to the opening of the Red Sea Rift System, making the area with tremendous volcanic tectonic activities.展开更多
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt...Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.展开更多
The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the...The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.展开更多
Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in ...Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterizedby relatively high abundances of MgO, total FeO and P_2O_5 and compatible elements (Cr, Ni, Sc), andrelatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and otherincompatible elements compared with the HPT. On the diagrams of trace element ratios, they areplotted on an approximately linear mixing line between depleted and enriched mantle sources,suggesting that these two types of basalts resulted from interactions of varying degrees betweenmantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole andapatite. The source region of the LPT involves a smaller proportion of lithospheric components,while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated bypartial melting of the basic igneous rocks at the base of the lower continental crust. Both the twotypes of magmas underwent certain crystal fractionation and contamination of the lower crest athigh-level magma chambers and en route to the surface.展开更多
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts ...Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.展开更多
The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is ju...The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP.展开更多
Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry o...Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.展开更多
Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, an...Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages...Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.展开更多
A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There ar...A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There are two ^40Ar/^39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger ^40Ar/^39Ar ages for some basalts with Iow-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The ^40Ar/^39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.展开更多
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferro...The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.展开更多
基金supported by the National Basic Research Program of China(No.2007CB411401)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-136)the National Natural Science Formation of China(No.40873028)
文摘The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts, with minor picrites in the lower part and andesites, trachytes, and rhyolites in the upper part. The picrites have relatively higher platinum- group element (PGE) contents (PGE=16.3-28.2 ppb), with high Cu/Zr and Pd/Zr ratios, and low S contents (5.03-16.9 ppm), indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province (ELIP) mantle source. The slightly high Cu/Pd ratios (11 000-24 000) relative to that of the primitive mantle suggest that 0.007% sulfides have been retained in the mantle source. The PGE contents of the high-Ti basalts exhibit a wider range (~PGE=0.517-30.8 ppb). The samples in the middle and upper parts are depleted in PGE and have ~Nd (260 Ma) ratios ranging from -2.8 to -2.2, suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides, and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts. The samples in this area show Pt- Pd type primitive mantle-normalized PGE patterns, and the Pd/Ir ratios are higher than that of the primitive mantle (Pd/Ir=l), indicating that the obvious differentiation between Ir-group platinum- group elements (IPGE) and Pd-group platinum-group elements (PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution. The Pd/Pt ratios of most samples are higher than the average ratio of mantle (Pd/Pt=0.55), showing that the differentiation happened between Pt and Pd. The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle; whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys, coprecipitating with Ir-Ru-Os alloys. Some high-Ti basalt samples exhibit negative Ru anomalies, possibly due to removal of laurite collected by the early crystallized chromites.
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.
基金Supported by National Key Research and Development Project of China (Grant Nos.2018YFA0703300,52105300)National Natural Science Foundation of China (Grant No.52075215)+2 种基金Science and Technology Development Plan Project of Jilin Province of China (Grant No.20200201061JC)Science and Technology Research Project of Jilin Provincial Education Department of China (Grant No.JJKH20221021KJ)Changchun Municipal Key Research and Development Program of China (Grant No.21ZGN22)。
文摘Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金The National Natural Science Foundation of China under contract Nos 42030502, 42090041 and 42166003the Guangxi Scientific Projects under contract Nos AD17129063 and AA17204074+1 种基金the Guangxi Youth Science Fund Project under contract 2019GXNSFBA185016the Ph.D. Research Start-up Foundation of Guangxi University under contract No. XBZ170339。
文摘As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.
基金funded by the National Natural Science Foundation of China (U1901217)Guangdong Basic and Applied Basic Research Foundation (2021A1515011298)+1 种基金the National Key R&D Program of China (2021YFF0501202)Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (SCSIO2023QY06)。
文摘Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO_(2) storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO_(2) mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO_(2)storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin(of the dried maar lake). Petrography,rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe–Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5–8.2 and are dominated by the Mg–Ca–HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO_(2) injection dissolves primary minerals, including anorthite, albite, and diopside, while CO_(2)mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO_(2) underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO_(2) mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula.
基金the National Natural Science Foundation of China(Nos.42176087,42322605)the Laoshan Laboratory(No.LSKJ202204100)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021206)。
文摘The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.
基金support from the National Natural Science Foundation of China(Grant No.42276049)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42020103).
文摘Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.
文摘The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous rock in this area. Necessary field inspection, geology, mineralogy and chemical tests were carried out on 8 basalt samples to determine their mineralogy, petrography and chemical composition. Representative samples have been tested with polarizing microscope, X-ray diffraction (XRD) and X-ray fluorescence (XRF). Petrographic and mineralogical studies show that the basalt is characterized by presence mainly of calcic-plagioclase feldspar, pyroxene-augite and olivine minerals. Secondary minerals of iron oxides also present (ilmenite and magnetite). The most appeared property is the alteration of olivine mineral to iddingsite that indicated highly weathered process. The composition of the basaltic samples reflects ultrabasic-basic type (Basanite-Tholeiitic basalt). The existence of volcanic activity occurred mostly with Pliocene age (< 2 Ma) as indicated by previous studies for similar basalt in Lebanon. Possibly, these boulders have been carried up from some deeper intrusive magmatic body under very active tension zones. Volcanism of Lebanon basalts belong to the alkaline olivine basalt, suite generally associated with tension, rifting and block faulting movements of the continental crust. Most of the volcanisms in Lebanon and in Harrat Ash Shaam Basalt from Syria and Palestine through Jordan to Saudi Arabia are related and connected to the opening of the Red Sea Rift System, making the area with tremendous volcanic tectonic activities.
基金funding support from the National Key R&D Program of China(Grant No.2022YFE0115800)the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.
文摘The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.
文摘Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterizedby relatively high abundances of MgO, total FeO and P_2O_5 and compatible elements (Cr, Ni, Sc), andrelatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and otherincompatible elements compared with the HPT. On the diagrams of trace element ratios, they areplotted on an approximately linear mixing line between depleted and enriched mantle sources,suggesting that these two types of basalts resulted from interactions of varying degrees betweenmantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole andapatite. The source region of the LPT involves a smaller proportion of lithospheric components,while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated bypartial melting of the basic igneous rocks at the base of the lower continental crust. Both the twotypes of magmas underwent certain crystal fractionation and contamination of the lower crest athigh-level magma chambers and en route to the surface.
基金funding from the European Research Council(ERC StG 279828)
文摘Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.
文摘The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP.
基金supported by National Science Foundation of China(40772123,40721063).
文摘Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.
基金the National Key Fundamental Research Project(No.G1999043205) the National National Science Foundation of China(Nos.40273020 , 40172026) Program of Excellent Young Scientists of the Ministry of Land and Resources.
文摘Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金The Special Basic Research Fund for Central Public Research Institutes (First Institute of Oceanograpgy,State Oceanic Administration)under contract No.GY02 -2008G38the Special Plan of Science and Technology Generalship in Qingdao under contract No.05-2 -JC-79the Special Project of Technical Foundational Work and Social Public Welfare Research under contract No.2003DIB3J114
文摘Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.
基金supported by a Youth Foundation from the former Ministry of GeologyMineral Resources and an 0utstanding Youth Foundation from the National Natural Science Foundation of China(grant 40425014).
文摘A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There are two ^40Ar/^39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger ^40Ar/^39Ar ages for some basalts with Iow-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The ^40Ar/^39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.
基金the project "Surveys for Polymetallic Nodules" project funded by Ministry of Earth Sciences, (previously Department of Ocean Development), New DelhiPD acknowledges the Councilof Scientific and Industrial Research, New Delhi, for financial assistance in the form of a Research Fellowship
文摘The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.