The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical...This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.展开更多
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research...In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t...Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.展开更多
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w...At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.展开更多
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time...The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.展开更多
UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable ti...UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stron...A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stronger ability than the exponential distribution (ED) and the cone-shaped kernel distribution (CKD) in reducing cross terms, meanwhile almost not decreasing the time-frequency resolution of ED or CKD.展开更多
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define...The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.展开更多
Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy...Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy in the signal can also be enhanced in the transform which can largely affect the characteristic frequency component identification for an accurate fault diagnostic.An improved algorithm termed as an improved second-order multisynchrosqueezing transform(ISMSST)is then proposed in this study to alleviate the problem of noise interference in the analysis of nonstationary signals.In the study,the time-frequency(TF)distribution of a nonstationary signal is calculated first using SMSST,and then aδfunction is constructed based on a newly proposed time-frequency operator(TFO)which is then substituted back into SMSST to produce a noisefree time frequency result.The effectiveness of the technique is validated by comparing the TF results obtained using the proposed algorithm and those using other TFA techniques in the analysis of a simulated signal and an experimental data.The result shows that the current technique can render the most accurate TFA result within the TFA techniques employed in this study.展开更多
A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro...A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).展开更多
Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transfo...Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film...A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。展开更多
Rock burst is a catastrophic dynamic disaster caused by sudden failure and instability of coal, loading paths play an important role in the failure of coal, the coal failure process is associated with charge exception...Rock burst is a catastrophic dynamic disaster caused by sudden failure and instability of coal, loading paths play an important role in the failure of coal, the coal failure process is associated with charge exception infonnation. Hence, violent coal failure mechanics and time-frequency domain distribution of charge signal such as rock burst under different loading paths should be studied in-depth. In this paper, grade and cyclic loading test were carried out for coal with impact tendency samples produced by blocks cored from 800 depth in Xiaoqing coal mine of the Tiefa coal group in northeast China. Theory discussion was carried out for the result of stress and strain, frequency-spectra analysis was conducted for the wavelet charge data, figures showing the evolution mechanism of mechanical properties and the relationship of timefrequency domain amplitude of charge signals in coal with different loading paths and stage were obtained. The failure process and characteristics of coal under different loading paths were summarized. It found that the loading path changed the manner of energy accelerate-release, there were more plastic strain generation in coal under cyclic loading than that under grade loading, the former was more likely to cause greater damage and failure, then the strength of coal under cyclic loading is generally lower than that under grade loading, an energy conversion mechanical model of stress, damage and deformation was developed and explained the effect of the loading path. Charge signal was primarily distributed in the strengthening and peak stages, where there was a high amplitude pulse at each stress drop. The charge pulse was a type of low frequency signal with a primary frequency distribution range of 1 -100Hz. Discussion on the charge generating mechanism from the perspective of friction slip, it demonstrated that the charge obtained during the coal failure process directly to stress loaded on and damage, the result verified it better. We propose that the research results in this study could be efficiently applied to daily mining activities, to provide an early warning and effectively avoid rock burst disaster.展开更多
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.
基金supported by the National Natural Science Foundation of China under Grant No. 61501084。
文摘In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
文摘Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.
基金Supported by the National Natural Science Foundation of China(No.51775325)National Key R&D Program of China(No.2018YFB1309200)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(2011ZX05005–005-008HZ and 2011ZX05006-002)
文摘The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
基金This research is sponsored by National Natural Science Foundation of China,Special Fund of Scientific Instruments:The studyand development of flameproof ground penetrating radar (50127402).
文摘UWB signal digitization depends, to a large extent, on the accuracy of sampling time. A highaccuracy programmable timer is therefore the key to implementing UWB signal data acquisition. A high-accuracy programmable timer based on the principle of ramp generators is described in this paper. The counting range of the timer is up to 16 bits, the timing precision is 8 ps, and the equivalent sampling rate is up to 50G Hz. No other identical product has been reported so far. This timer was successfully used in the data acquisition system for geological radar signals developed by us.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
文摘A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stronger ability than the exponential distribution (ED) and the cone-shaped kernel distribution (CKD) in reducing cross terms, meanwhile almost not decreasing the time-frequency resolution of ED or CKD.
文摘The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
文摘Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy in the signal can also be enhanced in the transform which can largely affect the characteristic frequency component identification for an accurate fault diagnostic.An improved algorithm termed as an improved second-order multisynchrosqueezing transform(ISMSST)is then proposed in this study to alleviate the problem of noise interference in the analysis of nonstationary signals.In the study,the time-frequency(TF)distribution of a nonstationary signal is calculated first using SMSST,and then aδfunction is constructed based on a newly proposed time-frequency operator(TFO)which is then substituted back into SMSST to produce a noisefree time frequency result.The effectiveness of the technique is validated by comparing the TF results obtained using the proposed algorithm and those using other TFA techniques in the analysis of a simulated signal and an experimental data.The result shows that the current technique can render the most accurate TFA result within the TFA techniques employed in this study.
文摘A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).
文摘Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金supported by the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1200044)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+1 种基金the Tianjin Science Foundation for Distinguished Young Scholars(No.19JCJQJC61000)the Shenzhen Science and Technology Project(No.JCYj20210324121002008).
文摘A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。
基金the National Key Research & Development Program of China (2017YFC0804208)the National Nature Science Foundation of China (Grant Nos. 51774122. 5177404& 51504122)Scientific Research Foundation of State Key Lab. of Coal Mine Disaster Dynamics and Control (2011DA105287-FW 201605).
文摘Rock burst is a catastrophic dynamic disaster caused by sudden failure and instability of coal, loading paths play an important role in the failure of coal, the coal failure process is associated with charge exception infonnation. Hence, violent coal failure mechanics and time-frequency domain distribution of charge signal such as rock burst under different loading paths should be studied in-depth. In this paper, grade and cyclic loading test were carried out for coal with impact tendency samples produced by blocks cored from 800 depth in Xiaoqing coal mine of the Tiefa coal group in northeast China. Theory discussion was carried out for the result of stress and strain, frequency-spectra analysis was conducted for the wavelet charge data, figures showing the evolution mechanism of mechanical properties and the relationship of timefrequency domain amplitude of charge signals in coal with different loading paths and stage were obtained. The failure process and characteristics of coal under different loading paths were summarized. It found that the loading path changed the manner of energy accelerate-release, there were more plastic strain generation in coal under cyclic loading than that under grade loading, the former was more likely to cause greater damage and failure, then the strength of coal under cyclic loading is generally lower than that under grade loading, an energy conversion mechanical model of stress, damage and deformation was developed and explained the effect of the loading path. Charge signal was primarily distributed in the strengthening and peak stages, where there was a high amplitude pulse at each stress drop. The charge pulse was a type of low frequency signal with a primary frequency distribution range of 1 -100Hz. Discussion on the charge generating mechanism from the perspective of friction slip, it demonstrated that the charge obtained during the coal failure process directly to stress loaded on and damage, the result verified it better. We propose that the research results in this study could be efficiently applied to daily mining activities, to provide an early warning and effectively avoid rock burst disaster.