In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphal...Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.展开更多
With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance an...With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.展开更多
The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides...The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides new alternatives for asphalt pavement materials,but also solves the existing construction problems and reduces project costs.Therefore,the research and application of modified asphalt using new materials and new processes is a crucial aspect in road construction.展开更多
The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test....The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.展开更多
In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road ...In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.展开更多
The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform ...The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform infrared spectrum(FTIR).FTIR shows that oxidative dehydrogenation reaction occurs in asphalt,and unsaturated carbon bond is generated under short-term thermal aging condition.Additionally,SBS polymer was aged significantly under that condition,the speed of which was faster than that of base asphalt.The aging laws of both asphalt and SBS polymer during the aging process of SBS modified asphalt were similar to their aging laws respectively.Due to the protective effect between asphalt and SBS polymer,the aging degrees of asphalt and SBS polymer were lower than those aged independently.展开更多
Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asph...Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.展开更多
The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade ...The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.展开更多
A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are...A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.展开更多
Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts w...Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts were chosen and modified by 2 different LDHs contents.DSR tests were performed on the original samples,samples after exposed to outdoor and samples after the artificial accelerated UV aging tests respectively to analyze the rheological properties.It is found that when the LDHs content is between 3wt% and 5wt% of asphalt weight,the high temperature performance and fatigue resistant property of the modified asphalt become better,the UV aging resistance properties are improved.展开更多
The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and ...The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modifiers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modified asphalts were evaluated to predict their field performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), defined as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modified asphalt binders due to the action of the crumb rubber.展开更多
Shear resistance properties of the virgin bitumen and modified bitumen binders with Tafpack Super(TPS) modifier and SBS modified bitumen were discussed.Dynamic shear rheometer(DSR) was used to measure the laboratory c...Shear resistance properties of the virgin bitumen and modified bitumen binders with Tafpack Super(TPS) modifier and SBS modified bitumen were discussed.Dynamic shear rheometer(DSR) was used to measure the laboratory creep data for these binders over a wide range of constant shear stresses at 20 ℃ to characterize the shear creep behaviors of all kinds of asphalt binders,and the rutting test system was used to investigate the permanent deformation of porous asphalt mixtures using the above bitumen binders for a fixed compressive stress.The shear strain rate and shear creep modulus were used to characterize the shear creep behavior of the TPS modified bitumen,and the rutting test results were used to show the consistency of porous asphalt mixtures with the bitumen binders.Results indicate that a distinction of shear creep strain can be made among different contents of TPS modified bitumen at the same stress level,where the shear creep strain-time response curve of the SBS modified bitumen binder is between the curves of the 8% TPS and 12% TPS modified bitumen binders.The shear strain rate and the shear creep modulus of the TPS modified bitumen binders are obtained to compare with those of the SBS modified bitumen binder which results in the same trend as the shear creep strain-time response curve.Permanent deformation results of all the porous asphalt mixtures from the rutting test show reasonable agreement with the findings of the shear strain rates and shear creep modulus over the range of shear stress levels.展开更多
For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is h...For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is herein proposed.Compared with the matrix asphalt mixture,the Marshall stability of the 30%CSPM modified asphalt mixture increased by 38.3%,the dynamic stability increased by nearly one time(reaching 1847.5 times/mm),the splitting strength ratio increased by 39.3%while the splitting tensile strength decreased by 11.7%.After curing,the performance of the CSPM modified asphalt mixture was further improved.The results show that CSPM improved the high temperature stability and water damage resistance of the asphalt mixture,and the low-temperature anti-cracking performance of that was slightly reduced.Chemical analysis of asphalt binders shows that a little sulfur reacted with asphalt to produce polysulfide compounds(R-Sx-R′),and a part of sulfur existed in the form of crystalline sulfur which was further increased after curing.The presence of crystalline sulfur as an inorganic filler is the key point for improving the high temperature stability and water resistance performance of modified asphalt mixture.展开更多
Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution...Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.展开更多
In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT conte...In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.展开更多
Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to des...Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.展开更多
Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder...Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.展开更多
In order to determine a proper compaction temperature that affects the workability and compactibility of the polymer-modified asphalt(PMA), the effect of compaction temperature was examined on the volumetric propert...In order to determine a proper compaction temperature that affects the workability and compactibility of the polymer-modified asphalt(PMA), the effect of compaction temperature was examined on the volumetric properties and the compaction energy indices. Change in compaction temperature shows an important influence on the maximum specific gravity of mixture(G_(mm)) by internal volume change of PMA. The change in G_(mm) mainly affects the effective volume of the aggregate(V_(Eff)). Reduction in V_(Eff) from Zero shear viscosity(ZSV) to superpave temperature allows 0.1%-0.15% of the asphalt binder to occupy highly the external voids of aggregates. The volumetric properties for all compaction specimens meet superpave criteria, but the energy efforts were the lowest at ZSV temperature. Lower energy efforts at the ZSV temperature reflect easier compaction than those at excessively high temperature. Clearly, excessive compaction temperature may not be necessary to improve the compactibility and to reduce the compaction efforts.展开更多
In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance...In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.展开更多
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
基金supported by the National Natural Science Foundation of China(51978070,51978072)Key Research and Development Plan Project of Shaanxi Province(2023-YBSF-110)the Fundamental Research Funds for the Central Universities,CHD(300102313206).
文摘Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.
基金supported by Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.
文摘The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides new alternatives for asphalt pavement materials,but also solves the existing construction problems and reduces project costs.Therefore,the research and application of modified asphalt using new materials and new processes is a crucial aspect in road construction.
基金The National Natural Science Foundation of China(No50578038)the PhDPrograms Foundation of Ministry of Education of China (No20050286008)
文摘The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(No.51968006).
文摘In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.
基金Funded by the National Natural Science Foundation of China(No.50878054)
文摘The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform infrared spectrum(FTIR).FTIR shows that oxidative dehydrogenation reaction occurs in asphalt,and unsaturated carbon bond is generated under short-term thermal aging condition.Additionally,SBS polymer was aged significantly under that condition,the speed of which was faster than that of base asphalt.The aging laws of both asphalt and SBS polymer during the aging process of SBS modified asphalt were similar to their aging laws respectively.Due to the protective effect between asphalt and SBS polymer,the aging degrees of asphalt and SBS polymer were lower than those aged independently.
基金Funded by the National Natural Science Foundation of China(Nos.50878054,51108081)
文摘Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.
基金Funded in Part by the National Natural Science Foundation of China (No. 50878054)
文摘The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.
基金Funded by the Communication Science and Technology Foundation of Inner Mongolia (NJ-2005-25)
文摘A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.
文摘Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts were chosen and modified by 2 different LDHs contents.DSR tests were performed on the original samples,samples after exposed to outdoor and samples after the artificial accelerated UV aging tests respectively to analyze the rheological properties.It is found that when the LDHs content is between 3wt% and 5wt% of asphalt weight,the high temperature performance and fatigue resistant property of the modified asphalt become better,the UV aging resistance properties are improved.
基金Funded by the National Natural Science Foundation of China(No.11162012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2014MS0507)
文摘The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modifiers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modified asphalts were evaluated to predict their field performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), defined as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modified asphalt binders due to the action of the crumb rubber.
基金Project(NCET-05-0656) supported by Education Ministry for the New Century Excellent Talents,China
文摘Shear resistance properties of the virgin bitumen and modified bitumen binders with Tafpack Super(TPS) modifier and SBS modified bitumen were discussed.Dynamic shear rheometer(DSR) was used to measure the laboratory creep data for these binders over a wide range of constant shear stresses at 20 ℃ to characterize the shear creep behaviors of all kinds of asphalt binders,and the rutting test system was used to investigate the permanent deformation of porous asphalt mixtures using the above bitumen binders for a fixed compressive stress.The shear strain rate and shear creep modulus were used to characterize the shear creep behavior of the TPS modified bitumen,and the rutting test results were used to show the consistency of porous asphalt mixtures with the bitumen binders.Results indicate that a distinction of shear creep strain can be made among different contents of TPS modified bitumen at the same stress level,where the shear creep strain-time response curve of the SBS modified bitumen binder is between the curves of the 8% TPS and 12% TPS modified bitumen binders.The shear strain rate and the shear creep modulus of the TPS modified bitumen binders are obtained to compare with those of the SBS modified bitumen binder which results in the same trend as the shear creep strain-time response curve.Permanent deformation results of all the porous asphalt mixtures from the rutting test show reasonable agreement with the findings of the shear strain rates and shear creep modulus over the range of shear stress levels.
基金Project(201703D321006)supported by the Shanxi Provincial Key Research and Development Project(Social Development),China。
文摘For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture,a method for preparing modified asphalt mixture with coking sulfur paste modifier(CSPM)is herein proposed.Compared with the matrix asphalt mixture,the Marshall stability of the 30%CSPM modified asphalt mixture increased by 38.3%,the dynamic stability increased by nearly one time(reaching 1847.5 times/mm),the splitting strength ratio increased by 39.3%while the splitting tensile strength decreased by 11.7%.After curing,the performance of the CSPM modified asphalt mixture was further improved.The results show that CSPM improved the high temperature stability and water damage resistance of the asphalt mixture,and the low-temperature anti-cracking performance of that was slightly reduced.Chemical analysis of asphalt binders shows that a little sulfur reacted with asphalt to produce polysulfide compounds(R-Sx-R′),and a part of sulfur existed in the form of crystalline sulfur which was further increased after curing.The presence of crystalline sulfur as an inorganic filler is the key point for improving the high temperature stability and water resistance performance of modified asphalt mixture.
基金Funded by Inner Mongolia Communication Technology Project (No.NJ-2005-25)
文摘Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.
基金Projects(51838001,51878070,51908069)supported by the National Natural Science Foundation of China。
文摘In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.
基金the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294&RP2022015296).
文摘Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.
基金supported by the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294).
文摘Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.
文摘In order to determine a proper compaction temperature that affects the workability and compactibility of the polymer-modified asphalt(PMA), the effect of compaction temperature was examined on the volumetric properties and the compaction energy indices. Change in compaction temperature shows an important influence on the maximum specific gravity of mixture(G_(mm)) by internal volume change of PMA. The change in G_(mm) mainly affects the effective volume of the aggregate(V_(Eff)). Reduction in V_(Eff) from Zero shear viscosity(ZSV) to superpave temperature allows 0.1%-0.15% of the asphalt binder to occupy highly the external voids of aggregates. The volumetric properties for all compaction specimens meet superpave criteria, but the energy efforts were the lowest at ZSV temperature. Lower energy efforts at the ZSV temperature reflect easier compaction than those at excessively high temperature. Clearly, excessive compaction temperature may not be necessary to improve the compactibility and to reduce the compaction efforts.
文摘In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.